Абсолютная точность – это отношение действительного выходного напряжения преобразователя, соответствующего полной шкале, к его расчетному выходному значению.
В АЦП абсолютная точность определяется тремя видами погрешностей: внутренне присущей преобразователям дискретной погрешностью (±Ѕ единицы младшего разряда) или погрешностью квантования, аналоговой погрешностью, обусловленной низким качеством элементов схемы (она обычно определяется в виде отношения полной погрешности в процентах ко всему суммарному входному сигналу), и апертурной погрешностью.
Погрешность линейности или нелинейность можно определить как максимальное отклонение любой из этих дискретных точек от прямой линии, проведенной через крайние точки характеристики преобразования. Эти крайние точки устанавливаются потребителем в процессе калибровочной настройки.
Относительная погрешность в АЦП – это максимальное отклонение выходных цифровых кодов от прямой линии, проведенной через нуль и точку, соответствующую полной шкале.
Нелинейность преобразователя – это отклонение от прямой линии, проведенной через крайние точки характеристики преобразования для заданного диапазона работы.
В нашем случае прямая, соединяющая две крайние точки рабочего диапазона датчика 600 и 1100 єС, является идеальной линейной характеристикой преобразования.
Из графиков (рис.1, рис.2) видно, что максимальное отклонение характеристики датчика от идеальной прямой появляется в значении шкалы 850°С и составляет 0,309.
Такое же значение подтверждают математические вычисления в программеMicrosoftExcel (из значений идеальной линейной характеристики вычитаются значения НСХ датчика ТХА(К)).
Относительная погрешность – это разность между номинальным и действительным отношениями аналоговой величины, соответствующей заданному цифровому входному сигналу, к полной шкале, независимо от калибровки последней.
Максимальная относительная погрешность нелинейности (в %) в диапазоне температур от 600 до 1100 єС, определяется по формуле (1):
или (1)где
– значение идеальной линейной характеристики преобразования для температуры 850 єС; – значение термо-э.д.с. НСХ термопары ТХА(К) для температуры 850 єС; – диапазон значений термо-э.д.с. НСХ термопары ТХА(К) для крайних точек характеристики преобразования .Итак, максимальная относительная погрешность нелинейности (в %) составит:
Наш измерительный преобразователь должен обеспечивать класс точности 0,25. Также измерительный преобразователь должен обеспечивать запас по погрешности, который должен быть не менее 20%., т.е. 20% от 0,25 составляют 0,05 и тогда точность преобразования должна быть лучше 0,2 (0,25 - 0,05= 0,2).
В нашем случае максимальная погрешность нелинейности составляет 1,53 %, что больше требуемой (0,2%), поэтому необходимо провести линеаризацию для обеспечения заданного класса точности измерения температуры датчика ТХА(К).
Разрешающая способность преобразователя есть наименьший уровень входного аналогового сигнала (для АЦП), для которого вырабатывается выходной цифровой код, и наименьший входной цифровой код (для ЦАП), для которого образуется уровень выходного аналогового сигнала. На практике полезная разрешающая способность преобразователя часто оказывается меньше указанной, поскольку она ограничивается из-за воздействия шума, температуры и факторов времени.
Для определения значения полезной разрешающей способности измерительного преобразователя с заданной точностью применим формулу:
где
– полезная разрешающая способность преобразователя; – требуемое значение класса точности преобразователя (0,2).Таким образом, полезная разрешающая способность (разрядность) аналого-цифрового преобразования должна быть лучше 500 единиц (квантов).
Согласно ГОСТ 8.009 «Метрологические характеристики средств измерения» максимальная погрешность преобразователя не должна превышать ±5 квантов (единиц младшего разряда), поэтому разрешающая способность аналого-цифрового преобразования будет равна:
где
– значение разрешающей способности аналого-цифрового преобразования; – полезное значение разрешающей способности; – максимальная погрешность преобразователя (±5 квантов).Таким образом, разрешающая способность аналого-цифрового преобразования должна быть не хуже 12 разрядов (212 = 4096 > 2500).
При необходимости линеаризации, на нее надо дополнительно 2 разряда, тогда значение разрешающей способности аналого-цифрового преобразования будет:
Таким образом, разрешающая способность аналого-цифрового преобразования должна быть не менее 14 разрядов.
Для достижения требуемой точности преобразования используют линеаризацию НСХ термопреобразователя. На практике широкое распространение получил метод линеаризации с помощью кусочно-линейной аппроксимации. В этом методе исходную функцию представляют ломанной кривой, уменьшая тем самым число точек характеристики, значение которых необходимо держать в памяти вычислительного устройства, соответственно при этом уменьшаются требования к вычислительному устройству, что удешевляет стоимость всей системы и упрощает ее.
Мы также будем использовать метод кусочно-линейной аппроксимации. Для этого разделим исходную НСХ термопреобразователя на несколько участков, в каждом из которых НСХ представляется прямым отрезком, соединяющим крайние точки характеристики НСХ.
В первом приближении число необходимых участков линеаризации можно определить по формуле (5)
, (5)где
– число участков линеаризации; – максимальная погрешность линеаризации (%) – требуемая точность преобразования (0,2)Итак,
= 1,53/0,2 = 7,65 8 участков.Таким образом, в первом приближении, для соответствия преобразователя классу точности 0,25, исходную НСХ термопреобразователя необходимо разделить на 8 участков.
При таком числе участков кусочно-линейная аппроксимация неэффективна, а использование ПЗУ для прямого преобразования выходного кода АЦП в значение температуры позволяет просто реализовать соответствие преобразователя классу точности 0,25 для диапазона температур от 600 до 1100°С.
Значение требуемой емкости ПЗУ найдем по формуле:
где
– число входных значений для ПЗУ; - разрядность входных данных с АЦП; – длина кода АЦП (в байтах).В нашем случае N=14 разрядов, длина выходного кода d=2байта (14бит/8бит).
По существу аналого-цифровые преобразователи либо преобразуют аналоговый входной сигнал (напряжение или ток) в частоту или последовательность импульсов, длительность которой измеряют для обеспечения отображающего цифрового сигнала, либо, чтобы получить цифровой выходной сигнал, сравнивают входной сигнал с переменным опорным сигналом, используя внутренний ЦАП.
Существует три ведущих способа преобразования, основанных на принципе измерения временного интервала: преобразование напряжения в частоту, метод с пилообразным напряжением и метод линейного интегрирования. На методе сравнения основываются схемы последовательного приближения, параллельные и модифицированные параллельные схемы.
В основном находят применение 2 основных типа АЦП: двухтактный интегрирующий АЦП и АЦП последовательного приближения. Каждый из них преобразовывает входное напряжение в цифровой код, пропорциональный входному напряжению.
При выборе принципа работы узла аналого-цифрового преобразования будем учитывать следующие факторы: