Однако, на практике невозможно провести слишком много измерений, поэтому нельзя построить нормальное распределение, чтобы точно определить истинное значение х0. В этом случае хорошим приближением к истинному значению можно считать
Тогда выборочная средняя квадратическая погрешность отдельного измерения (или эмпирический стандарт)
а выборочная средняя квадратическая погрешность ряда измерений
Из выражения (2.9) видно, что, увеличивая число измерений, можно сделать сколь угодно малой среднюю квадратическую погрешность
Таким образом, задача нахождения приближенного значения физической величины и его погрешности решена. Теперь необходимо определить надежность найденного действительного значения. Под надежностью измерений понимают вероятность попадания истинного значения в данный доверительный интервал. Интервал (
p(
В теории ошибок обычно под eпонимают величину
p(
где Ф(t) – интеграл вероятности (или функция Лапласа), а также нормальная функция распределения:
Таким образом, чтобы охарактеризовать истинное значение, требуется знать как погрешность, так и надежность. Если доверительный интервал увеличивается, то возрастает надежность того, что истинное значение х0 попадает в данный интервал. Высокая степень надежности необходима при ответственных измерениях. Это означает, что в таком случае нужно выбирать большой доверительный интервал или вести измерения с большей точностью (т. е. уменьшить величину
Под доверительной вероятностью понимается вероятность того, что истинное значение измеряемой величины попадает в данный доверительный интервал. Доверительный интервал характеризует точность измерения данной выборки, а доверительная вероятность – достоверность измерения.
В подавляющем большинстве экспериментальных задач доверительная вероятность составляет 0.9
До сих пор предполагалось, что число измерений хотя и конечно, но достаточно велико. В действительности же число измерений почти всегда бывает небольшим. Более того, как в технике, так и в научных исследованиях нередко используют результаты двух-трех измерений. В этой ситуации величины
Тогда
где Snопределяется формулой (2.8). Эта величина подчиняется распределению Стьюдента. Распределение Стьюдента характерно тем, что не зависит от параметров х0 и sнормальной генеральной совокупности и позволяет при небольшом числе измерений (n< 20) оценить погрешность Dx=
|
Распределение Стьюдента справедливо при n 2 и симметрично относительно ta= 0 (см. рис. 3). С ростом числа измерений ta-распределение стремится к нормальному распределению (фактически при n> 20).
Доверительную вероятность при заданной погрешности результата измерений получают из выражения
p(
При этом величина taаналогична коэффициенту tв формуле (2.11). Величину taназывают коэффициентом Стьюдента, его значения приводятся в справочных таблицах. Используя соотношения (2.14) и справочные данные можно решить и обратную задачу: по заданной надежности aопределить допустимую погрешность результата измерений.
Распределение Стьюдента позволяет также установить, что с вероятностью, как угодно близкой к достоверности, при достаточно большом nсреднее арифметическое значение
Предполагалось, что закон распределения случайной погрешности известен. Однако часто при решении практических задач не обязательно знания закона распределения, достаточно лишь изучить некоторые числовые характеристики случайной величины, например среднее значение и дисперсию. При этом вычисление дисперсии позволяет оценить доверительную вероятность даже в случае, когда закон распределения погрешности неизвестен или отличается от нормального.