Смекни!
smekni.com

Подвійне променезаломлення електромагнітних хвиль (стр. 2 из 4)

Існують і інші способи отримання поляризованого світла.

Отже, всякий прилад, службовець, для отримання поляризованого світла називається поляризатором. Той же прилад, вживаний для дослідження поляризації світла, називається аналізатором.

Допустимо, що два кристали турмаліну або два поляроїди поставлено один за одним, так що їх осі

і
утворюють між собою деякий кут (мал. 5).

Первый поляроид пропустит свет, электрический вектор

которого параллелен оси
. Обозначим через
интенсивность этого света. Разложим
на вектор
, параллельный оси
второго поляризатора, и вектор
, перпендикулярный к ней

(

).

Составляющая

будет задержана вторым поляроидом. Через оба поляроида пройдет свет с электрическим вектором
, длина которого равна

.

Отношение интенсивностей пропорционально отношению квадратов амплитуд:


і, отже

Це співвідношення має назву закон Малюса:

Інтенсивність світла, що пройшло через аналізатор

рівна інтенсивності світла, що пройшло через поляризатор
помноженою на квадрат косинуса кута
між аналізатором і поляризатором.

Закон був сформульований Малюсом в 1810 році і підтверджений ретельними фотометричними вимірюваннями Араго.

4. Явище подвійного променезаломлення

Фундаментальною властивістю світлових променів при їх проходженні в кристалах є подвійне променезаломлення, відкрите в 1670 році Бартоліном і детально досліджене Гюйгенсом, що опублікував в 1690 році свій знаменитий “Трактат про світло, в якому викладені причини того, що відбувається при віддзеркаленні і заломленні і, зокрема, при незвичайному заломленні в кристалах з Ісландії.” Явище подвійного променезаломлення пояснюється особливостями розповсюдження світла в анізотропних середовищах.

Якщо на кристал ісландського шпату направити вузький пучок світла, то з кристала вийдуть два просторово розділених світивши, паралельних один одному і падаючому променю.


Мал. 6

Навіть у тому випадку, коли первинний пучок світла падає на кристал нормально, заломлений пучок розділяється на два, причому один з них є продовженням первинного, а другою відхиляється. З часів Гюйгенса перший промінь отримав назву звичайного (

), а другий -необыкновенного (
)(мал. 6).

Напрям в кристалі, по якому промінь світла розповсюджується не випробовуючи подвійного променезаломлення, називається оптичною віссю кристала. А площина, що проходить через напрям променя світла і оптичну вісь кристала, називається головною площиною (головним перетином) кристала. Аналіз поляризації світла показує, що на виході з кристала промені виявляються лінійно поляризованими у взаємно перпендикулярних площинах.

Роздвоєння світла в кристалі завжди відбувається в головній площині. Оскільки при обертанні кристала навколо падаючого променя головна площина повертається в просторі, то одночасно повертається і незвичайний промінь. Розглянемо деякі найбільш прості випадки розповсюдження світла в кристалі.


Мал. 7

1. Якщо промінь

паралельний оптичній осі (мал. 7), те положення головної площини не визначене. Зокрема, площина малюнка є головною площиною, але такий же є, наприклад, і перпендикулярна нею площина. Умови розповсюдження променів з будь-якою поляризацією однакові, і вони не роздвоюються.

2. Якщо промінь

йде перпендикулярно оптичній осі (мал. 7), то електричний вектор, лежачий в головній площині, паралельний осі. Електричний вектор, перпендикулярний осі, лежить при цьому в площині, нормальній до головної, так що умови розповсюдження для цих складових електричного поля світлової хвилі неоднакові: промені не роздвоюються, але мають різну швидкість розповсюдження.

3. Якщо промінь

йде під довільним кутом до оптичної осі, то умови розповсюдження вказаних вище за складові також неоднакові: промені розповсюджуються по різних напрямах і з різними швидкостями (мал. 7).

Промінь, що має електричний вектор, перпендикулярний оптичній осі, у всіх цих випадках знаходиться в однакових умовах, так що закони його розповсюдження не повинні залежати від напряму розповсюдження; це і є звичайний промінь, що підкоряється звичайним законам заломлення.

Другий же, незвичайний промінь у всіх трьох випадках знаходиться в різних умовах (оптичні властивості кристала неізотропні), а тому і умови розповсюдження можуть ускладнюватися (

).

5. Хвилеві поверхні

Неоднакове заломлення звичайного і незвичайного променів указує на відмінність для них показників заломлення. Очевидно, що при будь-якому напрямі звичайного променя коливання світлового вектора перпендикулярні оптичній осі кристала, тому звичайний промінь розповсюджується по всіх напрямах з однаковою швидкістю і, отже, показник заломлення

для нього є величина постійна. Для незвичайного ж променя кут між напрямом коливань світлового вектора і оптичною віссю відмінний від прямого і залежить від напряму світивши, тому незвичайні промені розповсюджуються по різних напрямах з різними швидкостями. Отже, показник заломлення
незвичайного променя є змінною величиною, залежною від напряму світла.

Таким образом, обыкновенные лучи распространяются в кристалле по всем направлениям с одинаковой скоростью

, а необыкновенные- с разной скоростью
(в зависимости от угла между вектором
и оптической осью). Для луча, распространяющегося вдоль оптической оси,
,
, т.е. вдоль оптической оси существует только одна скорость распространения света. Различие в
и
для всех направлений, кроме направления оптической оси, и обуславливает явление двойного лучепреломления в одноосных кристаллах..

Допустимо, що в крапці

усередині одноосного кристала знаходиться точкове джерело світла.

На рис. 8 показано распространение обыкновенного и необыкновенного лучей в кристалле (главная плоскость совпадает с плоскостью чертежа,

-направление оптической оси). Волновой поверхностью обыкновенного луча (от распространяется с
) является сфера, необыкновенного луча (
)-эллипсоид вращения. Наибольшее расхождение волновых поверхностей обыкновенного и необыкновенного лучей наблюдается в направлении, перпендикулярном оптической оси. Эллипсоид и сфера касаются друг друга в точках их пересечения с оптической осью
. Если
(
), то эллипсоид необыкновенного луча вписан в сферу обыкновенного луча (эллипсоид скоростей вытянут относительно оптической оси) и одноосный кристалл называется положительным (рис. 8,а). Если
(
), то эллипсоид описан вокруг сферы (эллипсоид скоростей растянут в направлении, перпендикулярном оптической оси) и одноосный кристалл называется отрицательным (рис. 8,б).