Московский государственный технический университет им. Н. Э. Баумана.
Калужский филиал.
РЕФЕРАТ
“Магнитные свойства атомов ”
Магнитные свойства атомов
Все вещества (твердые, жидкие, газ, плазма) взаимодействуют с внешним электромагнитным полем. Это значит, изолированные атомы обладают магнитными свойствами. Этот раздел и посвящен изучению магнитных свойств.
§1.Орбитальный магнитный момент электрона
Наличие у атома этих свойств следует из представлений теории Бора.
Электрон, вращающийся по орбите ядра атома, эквивалентен контуру с током. Такой контур с током должен обладать магнитным моментом и, следовательно, должен вести себя в магнитном поле как подобно магнитному диполю. Определим орбитальный момент электрона: магнитный момент контура с током I равен
μ = I·S / C. (1)
I = e· V = e / T (2)
где С = 3 · 108 см/с, I – сила тока (в электростатических единицах), S – площадь контура. S = π · r2.
μl= l / (C) · νπr2 = l / (2mC) · mr2ω, (3)
где ω = 2·π·ν, μl – орбитальный магнитный момент электрона. Орбитальный момент количества движения
|
где V = ω · r. Электрон, движущийся по орбите, эквивалентен контакту с током, сила которого I = eν = e / T (1). Подставляем (4) в (3), получаем
Теперь в чисто классические рассуждения внесем квантовую поправку, учтем, что согласно квантовой механике орбитальный момент количества движения электрона
|
Тогда
где l = 0, 1, 2, 3,…, n-1. Обозначим eh / (4πmC) = μ0 и l(l+1) = l*, получим
где μ0 – магнетон Бора, служит единицей измерения атомных и молекулярных магнитных моментов и численно равен
μ0 = eh / (4πC) = 9,23 · 10-21 (9).
Так как заряд электрона отрицателен, то орбитальный магнитный момент электрона направлен в сторону, противоположную направлению вектора его орбитального момента количества движения
Если атом находится во внешнем магнитном поле, то т.к. электрон обладает орбитальным магнитным моментом, векторы магнитного момента
Согласно квантовой механике проекции вектора
PlH = Pl cos (
где ml =
Cosα = Cos (
Возможные ориентации вектора
При данном орбитальном квантовом числе 1 магнитное орбитальное квантовое число ml может принять любое из 2l + 1 значений и, следовательно, для данного
Возможные проекции орбитального момента μlH на направлении поля :
кратны магнетону Бора.
Важной характеристикой магнитного поля микросистем является так называемое “гидромагнитное” (магнитномеханическое) отношение, величины магнитного момента к величине соответствующего механического момента микросистемы. Согласно (6) и (7) для орбитальных магнитного и механического моментов гидромагнитное отношение
γl = μl/ Pl = e / 2mC(13)
В магнитном поле, ввиду наличия орбитального магнитного момента, атом ведет себя как диполь и обладает дополнительной энергией ΔΕ магнитного взаимодействия. Эта потенциальная энергия взаимодействия магнитного момента μl с внешним магнитным полем равна
ΔΕ = (
Приведенные рассуждения не совсем последовательны. Они полуклассические: в одних случаях привлекались понятия классической физики, в других – квантовой механики. Это делалось, исходя из соображений наглядности и простоты расчетов. Тот же самый результат можно получить на основе строгих квантово – механических рассуждений. При квантово – механических расчетах необходимо учесть, что при своем движении электрон “размазан” в пространстве около ядра, т.е. необходимо учесть пространственное распределение заряда. Поэтому нужно вычислить не линейный, а объемный ток. При этом вычисления показывают, что ни вдоль радиуса, ни вдоль меридианов, никакого тока нет. Они приводят к выводу, что ток течет только по широтам, как если бы мы имели дело с электроном, вращающимся в плоскости перпендикулярной оси вращения. Таким образом, квантово – механические вычисления также приводят к заключению о круговом линейном токе.
Это обстоятельство объясняет совпадения полуклассических рассуждений с квантово – механическими расчетами.
§2. Собственный магнитный момент электрона
Электрон помимо массы покоя m0 заряда 1 обладает собственным моментом качества движения -
Электрон обладает орбитальным моментом качества движения
Величины механических моментов и их проекций определяются соотношениями:
- орбитальный момент количества движения электрона |
где 1 = 0, 1, 2, 3,…, n-1;