Смекни!
smekni.com

Кинематика и динамика поступательного движения (стр. 3 из 19)

Погрешность функции q=f(x,...,z) нескольких переменных x,...,z, измеренных с погрешностями Dx,...,Dz ... в случае, если погрешности независимы и случайны, определяется по формуле:

. (10)

Вычисления погрешности с помощью формулы (9) обычно оказываются достаточно громоздкими. Поэтому лучше производить поэтапное вычисление, используя некоторые правила, два из которых являются наиболее употребляемыми:

1. Абсолютная погрешность суммы и разности равна квадратичной сумме абсолютных погрешностей

. (11)

2. Относительная погрешность комбинации произведения и частного равна квадратичной сумме относительных погрешностей

,

. (12)

Правила вычисления погрешностей для некоторых других функций приведены в Приложении 1.

Рассмотрим последовательность действий при вычислении погрешности косвенного измерения на примере формулы

.

Сначала найдем абсолютную и относительную погрешность суммы w=m+M:

.

Затем найдем относительную и абсолютную погрешности величины v:

.

Анализ полученной окончательной формулы позволяет установить:

а) Погрешности каких именно величин вносят наибольший вклад в общую погрешность. Точному измерению этих величин необходимо уделить наибольшее внимание.

б) Погрешности каких величин практически не влияют на окончательный результат и их можно даже отбросить.

Будем в дальнейшем не принимать в расчет погрешности постоянных (g, e, p ...) и табличных величин, измеренных с большой точностью. Например, погрешность приближенного числа p»3,14 составляет всего 0,05 %.

5. Линеаризация функции и метод наименьших квадратов

В физических исследованиях очень часто для сравнения эксперимента с теорией пользуются методом линеаризации теоретической зависимости, Например, исследуется зависимость перемещения S равноускоренного движения от времени движения. Теоретическая зависимость имеет вид

, (13)

где а – ускорение грузов.

Если по экспериментальным точкам построить график зависимости S от t, представляющий собой восходящую кривую, то по виду графика нельзя утверждать, что это парабола и именно та парабола второго прядка, которая соответствует проверяемой закономерности, т. к. похожие графики могут иметь другие закономерности. Единственным графиком, по внешнему виду которого можно однозначно судить о характере исследуемой зависимости, является прямая линия. Для того, чтобы воспользоваться этим свойством

в проверяемой закономерности необходимо выявить в ней такие новые переменные, зависимость между которыми была бы линейной. В нашем случае такими переменными являются S и t2. Следовательно, для проверки справедливости соотношения (13) имеет смысл строить график экспериментальной зависимости S от t2. На систему координат S, t2 (рис. 2) следует нанести экспериментальные точки, а также вправо и влево от них отложить отрезки, длина которых равна погрешностям измерения t2 (доверительным интервалам). Если через начало координат и доверительные интервалы можно провести прямую линию, т. е. экспериментальная зависимость S = f(t2) является линейной, значит соотношение (13) подтверждено экспериментально.

Используя график линеаризованной зависимости, можно определить некоторые параметры изучаемого явления из следующих соображений. Уравнение прямой можно записать в виде

y = kx +b. (14)

Угловой коэффициент k:

, (15)

где Dx – произвольный отрезок на оси - приращение аргумента, Dy – соответствующее приращение функции. Величина bможет быть определена как величина отрезка, отсекаемого графиком на оси 0Y. В нашем случае знание коэффициента k позволяет определить ускорение движения: a = 2k.

При нахождении величин k и b из графика к погрешностям измерения добавляется погрешность построения графика. Существует точный метод нахождения величин kи bметод наименьших квадратов (МНК). Этот метод позволяет провести прямую так, что сумма квадратов отклонений экспериментальных точек от графика минимальна. Формулы для определения величин k и b имеют вид:

,
. (16)

Зная k и b и задавшись какими-либо значениями x1и x2, можно по формуле (14) вычислить y1 и y2. Затем через две точки с координатами (x1,y1) и (x2,y2) проводится искомая линия.

Теория позволяет также найти погрешности коэффициентов kиb. Сначала вычисляют величины:

,
. (17)

Затем вычисляют коэффициент линейной корреляции:

. (18)

Это число принимает значения между -1 и +1. Если r близко к ±1, то точки лежат вблизи некоторой прямой линии; если r близко к 0, то точки не коррелированны и либо незначительно, либо совсем не группируются около прямой линии.

Вычисление абсолютных погрешностей коэффициентов kиbвыполняется по формулам:

,
. (19)

6. Микрокалькулятор

Основным назначением микрокалькулятора является быстрое и точное получение результатов арифметических вычислений. Поэтому отпадает необходимость в применении предварительного округления чисел.

Учитывая, что в лабораторных работах редко встречаются числа, имеющие больше четырех значащих цифр, точность до восьми цифр, получаемых на микрокалькуляторе, является излишней и маскирует существование инструментальной погрешности и по Для того чтобы избежать иллюзорного впечатления о высокой точности результата, полученного с помощью микрокалькулятора, нужно посредством правил подсчета значащих цифр округлить результат математических вычислений так, чтобы точность их соответствовала точности данных, полученных от измерения.


ИЗУЧЕНИЕ КИНЕМАТИКИ И ДИНАМИКИ ПОСТУПАТЕЛЬНОГО ДВИЖЕНИЯ НА МАШИНЕ АТВУДА

Цель работы

Экспериментальная проверка основных уравнений и законов поступательного движения тела на специально сконструированной для этого лабораторной установке – машине Атвуда.

Идея эксперимента

Несмотря на то, что основные уравнения кинематики и динамики прямолинейного движения имеют простую форму и не вызывают сомнения, экспериментальная проверка этих соотношений весьма сложна. Трудности возникают в основном по двум причинам. Во-первых, при достаточно больших скоростях движения тел необходимо с большой точностью измерять время их движения. Во-вторых, в любой системе движущихся тел действуют силы трения и сопротивления, которые трудно учесть с достаточной степенью точности.

Определим, например, время падения тела с высоты h = 1,0 м при gравным 9,8 м/с2:

. (1.1)

Если при выполнении эксперимента по определению g по времени падения тела с указанной высоты допускается погрешность в измерении времени равная 0,01 с, т. е. возможно получение значений времени 0,46 с или 0,44 с, разброс результатов измерений получается недопустимо большим: g=9,4 – 10,3 м/с2. С целью уменьшения влияния точности измерения времени на результаты измерений можно, например, резко увеличить высоту падения. Но при падении с больших высот достигаются большие скорости движения, что приводит к резкому увеличению сопротивления воздуха, которое трудно учесть.

Трудности рассмотренного опыта связаны с большим значением ускорения свободного падения. Так как ускорение большое, то тело быстро набирает скорость, а при этом или время падения мало и его трудно точно измерить, или сама расчетная формула неточна, т. к. не учитывает трение.

Уменьшить ускорение и одновременно максимально уменьшить силу сопротивления можно с помощью устройства, которое называют машиной Атвуда.