Погрешность функции q=f(x,...,z) нескольких переменных x,...,z, измеренных с погрешностями Dx,...,Dz ... в случае, если погрешности независимы и случайны, определяется по формуле:
Вычисления погрешности с помощью формулы (9) обычно оказываются достаточно громоздкими. Поэтому лучше производить поэтапное вычисление, используя некоторые правила, два из которых являются наиболее употребляемыми:
1. Абсолютная погрешность суммы и разности равна квадратичной сумме абсолютных погрешностей
2. Относительная погрешность комбинации произведения и частного равна квадратичной сумме относительных погрешностей
Правила вычисления погрешностей для некоторых других функций приведены в Приложении 1.
Рассмотрим последовательность действий при вычислении погрешности косвенного измерения на примере формулы
Сначала найдем абсолютную и относительную погрешность суммы w=m+M:
Затем найдем относительную и абсолютную погрешности величины v:
Анализ полученной окончательной формулы позволяет установить:
а) Погрешности каких именно величин вносят наибольший вклад в общую погрешность. Точному измерению этих величин необходимо уделить наибольшее внимание.
б) Погрешности каких величин практически не влияют на окончательный результат и их можно даже отбросить.
Будем в дальнейшем не принимать в расчет погрешности постоянных (g, e, p ...) и табличных величин, измеренных с большой точностью. Например, погрешность приближенного числа p»3,14 составляет всего 0,05 %.
5. Линеаризация функции и метод наименьших квадратов
где а – ускорение грузов.
Если по экспериментальным точкам построить график зависимости S от t, представляющий собой восходящую кривую, то по виду графика нельзя утверждать, что это парабола и именно та парабола второго прядка, которая соответствует проверяемой закономерности, т. к. похожие графики могут иметь другие закономерности. Единственным графиком, по внешнему виду которого можно однозначно судить о характере исследуемой зависимости, является прямая линия. Для того, чтобы воспользоваться этим свойством
в проверяемой закономерности необходимо выявить в ней такие новые переменные, зависимость между которыми была бы линейной. В нашем случае такими переменными являются S и t2. Следовательно, для проверки справедливости соотношения (13) имеет смысл строить график экспериментальной зависимости S от t2. На систему координат S, t2 (рис. 2) следует нанести экспериментальные точки, а также вправо и влево от них отложить отрезки, длина которых равна погрешностям измерения t2 (доверительным интервалам). Если через начало координат и доверительные интервалы можно провести прямую линию, т. е. экспериментальная зависимость S = f(t2) является линейной, значит соотношение (13) подтверждено экспериментально.
Используя график линеаризованной зависимости, можно определить некоторые параметры изучаемого явления из следующих соображений. Уравнение прямой можно записать в виде
y = kx +b. (14)
Угловой коэффициент k:
где Dx – произвольный отрезок на оси 0Х - приращение аргумента, Dy – соответствующее приращение функции. Величина bможет быть определена как величина отрезка, отсекаемого графиком на оси 0Y. В нашем случае знание коэффициента k позволяет определить ускорение движения: a = 2k.
При нахождении величин k и b из графика к погрешностям измерения добавляется погрешность построения графика. Существует точный метод нахождения величин kи b – метод наименьших квадратов (МНК). Этот метод позволяет провести прямую так, что сумма квадратов отклонений экспериментальных точек от графика минимальна. Формулы для определения величин k и b имеют вид:
,
. (16)
Зная k и b и задавшись какими-либо значениями x1и x2, можно по формуле (14) вычислить y1 и y2. Затем через две точки с координатами (x1,y1) и (x2,y2) проводится искомая линия.
Теория позволяет также найти погрешности коэффициентов kиb. Сначала вычисляют величины:
,
. (17)
Затем вычисляют коэффициент линейной корреляции:
. (18)
Это число принимает значения между -1 и +1. Если r близко к ±1, то точки лежат вблизи некоторой прямой линии; если r близко к 0, то точки не коррелированны и либо незначительно, либо совсем не группируются около прямой линии.
Вычисление абсолютных погрешностей коэффициентов kиbвыполняется по формулам:
6. Микрокалькулятор
Основным назначением микрокалькулятора является быстрое и точное получение результатов арифметических вычислений. Поэтому отпадает необходимость в применении предварительного округления чисел.
Учитывая, что в лабораторных работах редко встречаются числа, имеющие больше четырех значащих цифр, точность до восьми цифр, получаемых на микрокалькуляторе, является излишней и маскирует существование инструментальной погрешности и по Для того чтобы избежать иллюзорного впечатления о высокой точности результата, полученного с помощью микрокалькулятора, нужно посредством правил подсчета значащих цифр округлить результат математических вычислений так, чтобы точность их соответствовала точности данных, полученных от измерения.
Цель работы
Экспериментальная проверка основных уравнений и законов поступательного движения тела на специально сконструированной для этого лабораторной установке – машине Атвуда.
Идея эксперимента
Несмотря на то, что основные уравнения кинематики и динамики прямолинейного движения имеют простую форму и не вызывают сомнения, экспериментальная проверка этих соотношений весьма сложна. Трудности возникают в основном по двум причинам. Во-первых, при достаточно больших скоростях движения тел необходимо с большой точностью измерять время их движения. Во-вторых, в любой системе движущихся тел действуют силы трения и сопротивления, которые трудно учесть с достаточной степенью точности.
Определим, например, время падения тела с высоты h = 1,0 м при gравным 9,8 м/с2:
Трудности рассмотренного опыта связаны с большим значением ускорения свободного падения. Так как ускорение большое, то тело быстро набирает скорость, а при этом или время падения мало и его трудно точно измерить, или сама расчетная формула неточна, т. к. не учитывает трение.
Уменьшить ускорение и одновременно максимально уменьшить силу сопротивления можно с помощью устройства, которое называют машиной Атвуда.