3. Затем сигналы от обоих генераторов подают на «Y-вход». Частоту одного из генераторов изменяют на 1-2 Гц. Наблюдают на экране осциллографа картину биений. Определяют период биений, измеряя время 10-20 биений. По формуле (10.6) рассчитывают период биений. В выводе сравнивают вычисленный и измеренный период биений.
Задание 5. Изучение затухающих колебаний
Для получения затухающих колебаний в данной работе используется специальная электрическая схема. Питание схемы осуществляется от генератора развертки осциллографа, для чего с помощью длинного проводника соединяют клемму «П» устройства с клеммой «М», расположенной на задней панели осциллографа. Клеммы «Выход» соединяют с «Y-входом» осциллографа. Включают осциллограф и получают устойчивую осциллограмму затухающих колебаний с десятью-двенадцатью полными колебаниями. Для окончательной стабилизации картинки используют ручку «Амплитуда синхронизации», поставив переключатель вида синхронизации в положение «Внутр.».
1. Используя сетку на экране осциллографа, измеряют амплитуды нескольких колебаний, отстоящие на один период друг от друга.
2. Для определения периода затухающих колебаний поступают следующим образом.
Сначала подсчитывают число полных колебаний, приходящихся, например, на 10 больших клеток экранной сетки осциллографа. Затем, не изменяя настроек осциллографа (не трогая ручки «Диапазоны частот» и «Частотаплавно», «Усиление X» ), вместо устройства для получения затухающих колебаний подключают к осциллографу генератор ГЗ-33. Пользуясь только ручками управления генератора, получают на экране синусоиду с таким же периодом (с таким же количеством колебаний на экране), как и у затухающих колебаний. Частоту определяют по лимбу генератора. Вычисляют период колебаний.
3. Вычисляют отношения А0/А0 , А0/А1 , А0/А2 , А0/А3 и т. д. и натуральные логарифмы этих отношений. Строят график ln(A0/Ai)=f(t) от времени (рис.25). Масштаб времени равен периоду колебаний. По углу наклона прямой полученной прямой находят коэффициент затухания b и логарифмический декремент затухания d.
Цель работы
Произвести наблюдение формы собственных колебаний струны при неизменном ее натяжении и исследовать зависимость скорости распространения поперечной волны в струне от ее характеристик.
Идея эксперимента
В работе собственные колебания струны исследуются методом резонанса. Явление резонанса заключается в следующем: если частота вынуждающей силы, периодической во времени и приложенной к малому участку струны, становится равной одной из собственных частот струны, то в ней устанавливаются стоячие волны с максимальной амплитудой колебаний. При этом необходимо, чтобы участок приложения вынуждающей силы совпадал с одной из пучностей соответствующей стоячей волны. Стоячая волна получается в результате наложения волн одинаковой частоты и амплитуды, распространяющиеся в противоположных направлениях (частный случай интерференции).
В натянутой между двумя закрепленными точками струне при возбуждении колебаний устанавливаются стоячие волны. Так как точки закрепления струны являются узлами стоячих волн, то в струне возбуждаются колебания лишь таких частот, при которых на длине струны lукладывается целое число полуволн l/2. Отсюда
(11.1)где l – длина струны.
Учитывая связь скорости распространения колебаний vс частотой n и длиной волны l , получаем для скорости
(11.2)Скорость распространения волны зависит только от собственных характеристик струны и определяется по формуле
(11.3)где P,d,r - натяжение, диаметр и плотность материала струны соответственно. Подставляя значения скорости в формулу (11.2), получаем окончательное выражение для собственных частот колебаний струны:
(11.4)Самая низкая собственная частота (или самый низкий тон, издаваемой струной) получаемый при n = 1
(11.5)называется основной частотой или основным тоном. Более высокие частоты, кратные
n1, называются обертонами основной частоты или гармониками. Основная частота называется первой гармоникой, удвоенная основная частота или первый обертон – второй гармоникой и т.д.
Приняв за начало координат одну из точек закрепления струны и направив ось х вдоль струны, запишем уравнение n- й стоячей волны:
, (11.6)где xn – поперечное отклонение точки струны с абсциссой х в момент t, – амплитуда,
. Профиль стоячей волны в любой момент времени имеет форму синусоиды и представляет собой график распределения смещений и амплитуд по оси х. Частоты колебаний всех точек струны одинаковы и определяются по формуле (11.4).Итак, струна, закрепленная на двух концах, не может находиться в простом гармоническом колебании с любой частотой, допустимы лишь частоты, определяемые формулой (11.4).
В общем случае в струне могут устанавливаться одновременно колебания самых разных частот, но кратных основной частоте, так как струна представляет собой систему с гармоническими обертонами.
Экспериментальная установка
В схеме установки, представленной на рисунке 26, струна из медной проволоки натягивается на некоторой высоте между двумя стойками-струбцинами. Один конец струны закреплен неподвижно, а к другому концу, перкинутому через блок, прикреплена платформа с грузами, с помощью которых в струне создается натяжение.От генератора электрических колебаний на струну подается регулируемое по частоте переменное напряжение. Вдоль струны может свободно перемещаться постоянный магнит.
Участок струны с текущим по нему переменным током попадает в поле постоянного магнита. При этом возникает периодическая сила, приложенная к струне. Частота изменения этой силы равна частоте переменного тока. В том случае, когда частота генератора будет совпадать с одной из собственных частот струны, а положение полюсов магнита – с пучностью стоячей волны, соответствующей данной частоте, наблюдается явление резонанса: в струне устанавливается стоячая волна.
Проведение эксперимента
Измерения и обработка результатов
1. Между двумя струбцинами, укрепленными на столе, натягивают тонкую медную проволоку. Для обеспечения надежного электрического контакта место закрепления конца струны и место ее касания блока должны быть предварительно хорошо зачищены с помощью наждачной бумаги. На свободный конец струны подвешивают платформу для грузов. К клеммам на струбцинах подключают выход генератора.
2. Включают генератор звуковых частот.
3. Создают натяжение в струне, поместив на платформу для грузов какой-либо разновес. При определении натяжения струны учитывается масса платформы. Для первого опыта рекомендуется взять общую массу груза 120-140 г.
4. С помощью микрометра измеряют диаметр струны, а с помощью линейки ее длину.
5. Устанавливают магнит посередине струны и, плавно изменяя частоту вращением лимба генератора (в районе 20 - 30 Гц), добиваются устойчивых колебаний основного тона. Затем увеличивают частоту колебаний в кратное число раз и, передвигая магнит вдоль струны, получают устойчивые колебания последующих обертонов. Если амплитуды колебаний малы, следует увеличить выходное напряжение на генераторе.
6. Записывают в таблицу 11.1. отчета в порядке возрастания значения частот звукового генератора, при которых на струне устанавливаются стоячие волны. Вычерчивают профили стоячих волн.
7. Подставляют в формулу (11.2) полученные значения резонансных частот и вычисляют скорость волны в струне для различных опытов. Находят среднее значение скорости при данном натяжении струны. Оценивают погрешность измерения скорости. При этом можно использовать результаты первого опыта, очевидно дающий наибольшую погрешность. Погрешность в измерении собственных частот колебаний струны равна половине цены делений на лимбе генератора.
8. Изменяют первоначальное натяжение струны. В результате этого изменяется скорость распространения поперечных волн и набор собственных частот. Проводят измерения и вычисления согласно пп. 5 и 7 при других натяжениях. Рекомендуется варьировать натяжение струны ступенчато через 0,5 Н.
9. По формуле (11.3) рассчитывают теоретические значения скорости волны в струне при различных натяжениях. (Расчеты проводятся в системе СИ; плотность меди r = 8,9×103 кг/м3). Оценивают погрешность такого расчета.
10. В выводе сопоставляют измеренные и вычисленные значения скорости.
11. Для проверки характера зависимость скорости волны в струне от величины натяжения строят график зависимости квадратов измеренных скорости распространения от величины ее натяжения.