где
Коэффициенты макроскопической теории
Используя классическую теорию термодинамики, для описания рассеяния света можно ввести параметры Стокса.
Вывод параметров Стокса и их свойства.
Поскольку полный вывод параметров Стокса в современной литературе нелегко найти в одном месте, полезно охарактеризовать основной путь, ведущий к установлению связей между этими параметрами и основным состоянием поляризации рассеянного излучения [ ]. Рассмотрим элементарный процесс рассеяния отдельной частицей, помещенной в точку О на рис.2, а.
|
|
a) б)
Рис.2 Графическое изображение элементарного процесса рассеяния и определение используемой системы координат. а – правосторонняя ортогональная система координат для падающего и рассеянного излучений, определение угла рассеяния
Предположим, что в результате этого процесса получается полностью поляризованное монохроматическое излучение с произвольной ориентацией эллипса поляризации, распространяющееся в направлении 3 (перпендикулярно плоскости чертежа рис.2, б). Это направление вместе с направлением падающего излучения I0и точкой О определяет плоскость рассеяния. Два других направления 1 и 2 совместно с направлением 3 образуют правую ортогональную систему координат с центром в точке О/. Направления 1 и 2 всегда выбираются соответственно перпендикулярно и параллельно плоскости рассеяния.
Чтобы найти соотношение между вектор-параметрами Стокса I0 и I, которые связаны матрицей рассеяния (10) и комплексными амплитудами S1 и S2, определяемые из теории, необходимо, прежде всего, сделать два вполне справедливых допущения.
Во-первых, примем, что экспериментально можно определить (например, с помощью анализаторов и пластинок в ¼ длины волны) осреднение по времени амплитуды и разности фаз колебаний электрического вектора вдоль направлений 1 и 2 [ ].
Во-вторых, предположим, что значения комплексных амплитуд рассеяния вдоль этих направлений можно теоретически выразить через амплитуды падающего излучения (это делается при помощи теории Ми). Рассмотрим теперь поле излучения вдоль фиксированной плоскости, проходящей через точку О/, которая удалена от точки О на расстояние, достаточное для выполнения указанных выше условий освещения (рис 2, б). Принимая во внимание, как обычно, наличие гармонических колебаний вектора
где
относятся к компонентам вектора
Это общая форма уравнения эллипса, описываемого концом вектора электрического поля. Большая и малая оси этого эллипса вдоль направлений
которая дает компоненты поля вдоль направлений
Раскрывая тригонометрическое выражение
где
Исключая угол
Используя соотношение (14) и производя стандартные преобразования, полагаем
Следует подчеркнуть, что уравнение (15) не имеет смысла, если
при которой центр эллипса находится в начале координат, а большая
Используя выражение (14), после группировки членов и упрощений получаем
или