|
Распределение Ферми – Дирака при различных значениях КТ показано на рисунке. Здесь энергия Ферми имеет смысл энергии уровня, которому отвечает 50%-ная вероятность заполнения.
Число свободных уровней (вакансий) ниже уровня Ферми, и их распределение относительно eF совпадает с числом и распределением заполненных состояний выше уровня Ферми. Эти состояния отвечают тепловому возбуждению электронной системы и обеспечивают появление кинетической энергии направленного движения. С ростом температуры (увеличение КТ) уменьшается наклон кривой f(e) вблизи eF и увеличивается вероятность заполнения состояний с большими энергиями.
Из выражений для f(E, K, T) видно, что проводимость материалов сильно зависит от температуры.
В полупроводниках положение уровня Ферми соответствует формально потолку валентной зоны, но это неверно. Пусть с потолка валентной зоны (с энергией eV) отдельный электрон от возбуждения перешел на дно (с энергией eC) пустой зоны проводимости.
eV – потолок валентной зоны
|
На рисунке уровень Ферми находится в середине запрещенной зоны, учитывая симметрию распределения Ферми – Дирака относительно энергии Ферми eF и очевидную симметрию функции f(E) в промежутке между потолком валентной зоны и дном зоны проводимости.
* Определим вероятность перехода электрона в зону проводимости для алмаза, ширина запрещенной зоны eg»5,5 эв. при комнатной температуре КТ = 0,026 эв. для дна зоны проводимости
Таким образом, вряд ли даже один из каждых 1044 электронов в валентной зоне будет иметь энергию, достаточную для перехода в зону проводимости при комнатной температуре. Поскольку каждый моль вещества содержит около 1024 атомов. Следовательно, алмаз – хороший изолятор.
Определим для
В этом случае приблизительно один валентный электрон из миллиона может при возбуждении перейти на дно зоны проводимости и в зоне проводимости можно найти электроны.
Их будет значительно меньше, чем в случае проводника, у которого f(e) в зоне проводимости составляет порядка единицы. Однако в зоне проводимости полупроводника все же имеется достаточно электронов и они вносят вклад в электропроводность полупроводника. В полупроводниках f(e) сильно зависит от температуры. Возрастание температуры на 100К относительно комнатной (3000К) т.е. всего на 3% вероятность перехода электронов в зону проводимости увеличивается приблизительно на 30%. С уменьшением ширины запрещенной зоны чувствительность полупроводников к температуре возрастает.
Возбуждаясь с переходом в зону проводимости, электроны оставляют после себя в валентной зоне незанятые состояния или «дырки». Заполненная первоначально валентная зона становится частично заполненной и, следовательно, в ней возможны энергетические возбуждения электронов, хотя очень небольшого числа. Дырка ведет себя подобно положительно заряженной частице, которая может участвовать в электрической проводимости. Реальному движению электронов соответствует более или менее свободной фиктивное движение дырок в направлении внешнего электрического поля.
|
Дырки реагируют на внешнюю силу (например, на внешнее электрическое поле) не так, как свободные электроны, поэтому, чтобы учесть влияние других атомов на подвижность дырок, им приписывают эффективную массу m*, которая немного больше эффективной массы электрона.
Плотность тока электронов и дырок
где n – концентрация электронов,
р – концентрация дырок,
mn – подвижность электронов,
mp – подвижность дырок.
Под действием внешнего электрического поля электроны и дырки приобретают скорости направленного движения, дрейфовые скорости
mnи mдр - подвижности
Для собственных полупроводников n=p
или
где
n – сильно зависит от температуры в зоне проводимости, в то время как подвижности слабо зависят от температуры
Если концентрация электронов в зоне проводимости мала, то вероятность заполнения каждого уровня мала по сравнению с единицей в знаменателе, то ею можно пренебречь.
Электропроводность собственных полупроводников возрастает с температурой, у проводников уменьшается.
|
Если прологарифмировать
Это дает возможность, измеряя электропроводность полупроводника при различных температурах, определить опытным путем ширину запрещенной зоны
|
Для металлов с ростом температуры сопротивление увеличивается
R0 –сопротивление при t = 00С
Rt – сопротивление при t0С
a – термический коэффициент сопротивления, равный 1/273
Для металлов
Для полупроводников сопротивление с ростом температуры быстро уменьшается
где Ea – энергия активизации, она различна для разных интервалов температур.
Наличие энергии активации Ea означает, что для увеличения проводимости к полупроводниковому веществу необходимо подвести энергию. Полупроводники – это вещества, проводимость которых сильно зависит от внешних условий: температуры, давления, внешних полей, облучения ядерными частицами.
Полупроводники – это вещества, имеющие при комнатной температуре удельную электрическую проводимость в интервале от 10-8 до 106 Сим м-1, которая зависит сильно от вида и количества примеси, и структуры вещества, и от внешних условий.
* В полупроводнике с собственной проводимостью число электронов равно числу дырок, каждый электрон создает единственную дырку.
Число возбужденных собственных носителей экспоненциально зависит от
Если mC=mh, то
Индекс I (intrinsic – собственность)
Не содержит уровня Ферми.
Это закон действующих масс, который утверждает, что расстояние уровня Ферми от краев обеих зон должно быть велико по сравнению с КТ = 0,026 эв. При 3000К (комнатная температура), при условии me = mh = m, произведение niPi
для германия 3,6 × 1027 см-6,
для кремния 4,6 × 1019 см-6.
Энергия активации Ea для собственного полупроводника равна половине ширины запрещенной зоны