Волновые функции S и P – электронов образуют одну совершенно пустую гибридную SP – зону и одну заполненную гибридную SP – зону. Заполненная и пустая зоны разделены довольно значительным энергетическим интервалом или зоной запрещенных значений энергии. Для изоляторов типичное значение ширины запрещенной зоны ~ 5 эв и больше. Ширина запрещенной зоны для полупроводников (германия 0,67 эв, кремния 1,12 эв) находится в пределах 0,1 ¸ 3 эв.
Полупроводники и изоляторы отличаются друг от друга только шириной запрещенной зоны.
Рис.12
|
§ Теорема Блоха
Теорема Блоха утверждает, что собственные функции волнового уравнения с периодическим потенциалом имеют вид произведения функции плоской волны
На функцию
Индекс
Волновую функцию
Форма волнового пакета при t=0 для дебройлевских волн
Скорость распространения волны может быть найдена как скорость перемещения постоянной фазы.
Если время изменится на величину ∆t, то для того, чтобы соблюдалось условие (2), координата должна измениться на величину ∆х, которая может быть найдена из равенства
т.е.
Отсюда скорость распространения постоянной фазы, получившей название фазовой скорости:
Фазовая скорость фотонов (m0 = 0) равна скорости света
Фазовая скорость электрона, движущегося со скоростью V, можно написать
т.е. она становится больше скорости света, поскольку V< с. Это говорит о том, что фазовая скорость не может соответствовать движению частицы или же переносу какой-либо энергии.
Реальный процесс не может быть чисто монохроматическим (k = const). Он всегда обладает определенной шириной, т.е. состоит из набора волн, обладающих близкими волновыми числами, а вместе с тем и частотами.
С помощью набора волн можно построить волновой пакет, амплитуда которого отлична от нуля лишь в небольшой области пространства, которую связывают с местоположением частицы. Максимум амплитуды волнового пакета распространятся со скоростью, которая получила название групповой скорости.
Амплитуда В волнового пакета
где A – амплитуда постоянная каждой из этих волн.
В распространяется со скоростью
Для фотонов (m0 = 0)
Для дебройлевских волн
т.е. групповая скорость совпадает со скоростью движения частицы.
В точках
Квадрат амплитуды обращается в нуль.
Область локализации волнового пакета
где
где
Соотношения неопределенностей Гейзенберга. Чем меньше
где амплитуда во всем пространстве имеет одно и то же значение, т.е. наложение частицы (одномерный случай) во всем пространстве равновероятно. Это обобщается и на трехмерный случай.
Для нерелятивистского случая (m = m0) время расплывания волнового пакета
если m = 1г,
время расплывания чрезвычайно велико. В случае электрона m0 ~ 10-27г
т.е. для описания электрона в атоме мы должны использовать волновое уравнение, т.к. волновой пакет расплывается практически мгновенно.
Волновое уравнение фотона содержит вторую производную по времени, т.к. фотон всегда релятивистская частица.
Движение электрона в кристалле
где m* - эффективная масса, она учитывает совместное действие потенциального поля и внешней силы на электрон в кристалле.
Эффективная масса – тензорная величина, в различных направлениях она различна, что является следствием анизотропных свойств кристаллов.
Ек – уравнение эллипсоида вращения и описывается двумя значениями масс
Энергетический спектр электронов и дырок в координатах Е и K
Импульс электрона
Дырки – квазичастицы с меньшей энергией располагаются у потолка валентной зоны и увеличивают свою энергию, перемещаясь по шкале энергии вглубь валентной зоны. Для дырок и электронов отсчет энергий в противоположных направлениях.