Смекни!
smekni.com

Зонна теорія електропровідності напівпровідників (стр. 4 из 6)

Одна з галузей Е (к) зони провідності як у кремнію, так й у германію (рис. 4.6) лежить значно нижче інших. Положення абсолютного мінімуму енергії визначає дно зони провідності. Мінімуми енергії називають також долинами.

Абсолютний мінімум зони провідності в германію розташований у напрямку осей 11111 (рис. 4.6), тому є вісім еквівалентних мінімумів енергії, координати яких в одиницях2к/а мають вигляд (1/2, 1/2, 1/2) і лежать на границі зони Бріллюєна (на рис. 4.6 вони показані жирною точкою). Ізоенергетичні поверхні поблизу абсолютних мінімумів енергії (або долин) являють собою еліпсоїди обертання відносно великої напівосі. І на першу зону Брілюєна припадає половина кожного еліпсоїда енергії, а отже, у германію є не вісім, а тільки чотири повних еліпсоїди енергії (рис. 4.7).

Абсолютний мінімум зони провідності в кремнію лежить у напрямку осей (1001) неподалік від границі зони Брілюєна (рис. 4.6). Тому в кремнію є шість еквівалентних мінімумів анергії, а отже, у кремнію на першу зону Брілюєна доводиться шість еліпсоїдних поверхонь постійної енергії, витягнутих уздовж осей 11001 (рис. 4.6). Центри еліпсоїдів розташовані на відстані трьох чвертей від центра зони Брілюєна.

Рис. 4.7. Форми поверхонь постійної енергії в зонах провідності германію та кремнію.

Залежність енергії від хвильового вектора k до поблизу абсолютних мінімумів зони провідності в германії й кремнії виражається формулою

Мінімальна відстань між дном зони провідності й вершиною валентної зони називається шириною забороненої зони. У кремнію й германію екстремуми енергії електронів і дірок лежать у різних точках зони Брілюєна (рис. 4.7). При кімнатній температурі й нормальному атмосферному тиску ширина забороненої зони в германію достатньо високого ступеня чистоти дорівнює 0,67 еВ, у кремнію вона становить 1,11 еВ.

Розділ. 5. Заповнення зон електронами та електричні властивості напівпровідників

Кожна енергетична зона містить, як ми вияснили, обмежене число енергетичних рівнів. Відповідно до принципу Паулі на кожному рівні може розміститися не більше двох електронів. При обмеженому числі електронів, що утримуються у твердому тілі, заповненими виявляться лише декілька найбільш низьких енергетичних зон.

По характеру заповнення зон електронами всі тіла можна розділити на дві великі групи.

1. До першої групи відносять тіла, у яких над цілком заповненими зонами розташовується зона, заповнена лише частково (рис. 5.1,а). Така зона виникає в тому випадку, коли атомний рівень, з якого вона утвориться, заповнений в атомі лише частково. Типовим прикладом цьому можуть служити лужні метали. У натрію, наприклад, що має електронну конфігурацію
11Nals2s2p63s1, на рівні 3s перебуває один електрон, у той час як для заповнення цього рівня необхідно два електрони. Тому зона 3s, що утвориться із рівня 3s, виявляється заповненою лише наполовину.

Частково заповнена зона може виникати й внаслідок накладення заповнених зон на порожні або частково заповнені зони, як це має місце в лужноземельних металів (мал. 5.1,б). Наявність зони, заповненої електронами лише частково, характерно для металів.

Рис. 5.1. Зонна структура твердих тіл.

2. До другої групи відносять тіла, у яких над цілком заповненими зонами розташовуються порожнізони (мал. 5.15,в). Типовим прикладом твердих тіл із таким характером заповнення зон є елементарні напівпровідники IV групи таблиці Менделєєва: алмаз, кремній, германій. Як уже вказувалося раніше, валентна зона цих елементів, що містить чотири стани на атом, заповнена чотирма валентними електронами, у той час як зона провідності, що містить також чотири стани на атом, виявляється зовсім порожньою.

До цієї ж групи твердих тіл ставляться й багато хімічних сполук. Всі вони є або напівпровідниками або діелектриками.

Відповідно до зонної теорії твердих тіл електрони зовнішніх енергетичних зон мають практично однакову свободу руху у всіх тілах, незалежно від того, є вони металами або напівпровідниками (діелектриками). У відсутності зовнішнього поля цей рух не може, однак, привести до виникнення електричного струму, тому що розподіл електронів по швидкостях є симетричним. Це означає, що якщо в кристалі вибрати електрон, що рухається з даною швидкістю в даному напрямку, то обов'язково знайдеться інший електрон, що має швидкість таку ж по величині, але протилежну по напрямку.

Розглянемо з погляду зонної структури електричні властивості, якими повинні володіти напівпровідники (діелектрики).

У напівпровідників і діелектриків зони валентних електронів (валентні зони) заповнені цілком і відділені від вільної зони досить широким енергетичним інтервалом. Зовнішнє поле, прикладене до такого кристала, не в змозі змінити характер руху електронів у валентній зоні, тому що воно не здатне підняти електрони у вільну зону, яка розташована вище. Усередині ж самої зони, що не містить жодного вільного рівня, воно може викликати лише перестановку електронів місцями, що не порушує симетрії розподілу їх по швидкостях. Тому в таких тілах електричне поле не може викликати появи спрямованого руху електронів, тобто появи електричного струму, незважаючи на наявність «вільних» електронів, здатних рухатися по всьому тілу.

Природно, що такі тіла при абсолютному нулі повинні мати нульову електропровідність, тобто бути ізоляторами. Однак з підвищенням температури, внаслідок термічного порушення електронів валентної зони, частина з них може отримати енергію, достатню для подолання забороненої зони й переходу в зону провідності. Остання перетворюється тоді в частково зайняту, а в раніше цілком заповненій валентній зоні з'являються вакансії, по яких може відбуватися рух електронів. Чим менша ширина забороненої зони й вище температура кристала, тим більше електронів переходить у вільну зону й тем більше вакансій утвориться у валентній зоні. Для тіл, у яких ширина забороненої зони не перевищує 1 еВ, уже при кімнатній температурі в зоні провідності виявляється достатнє число електронів, а у валентній зоні – вакансій, щоб обумовити відносно високу електропровідність. Такі тіла звичайно називають напівпровідниками.

Звідси стає ясним, що розподіл твердих тіл другої групи, на діелектрики й напівпровідників є чисто умовним. У міру того, як у якості напівпровідників починають використовувати матеріали з усе більше широкою забороненою зоною, подібний розподіл поступово втрачає свій сенс.


Розділ 6. Діркова провідність напівпровідників

Електрони валентної зони, у якій є вільні стани, під дією зовнішнього електричного поля можуть переходити на ці стани й створювати в кристалі електричний струм. Визначимо миттєву величину цього струму.

Миттєвий струм, створюваний одним електроном, що рухається зі швидкістю v, дорівнює:

І0 = -ev (6.1)

Припустимо, що таким електроном є електрон, стан якого характеризується хвильовим вектором ks (рис. 6.1).

Результуючий миттєвий струм для всієї сукупності електронів у зоні дорівнює:

(6.2),

де сумування ведеться по всіх станах, зайнятим електронами. Для зони, повністю укомплектованої електронами, І=0, тому що будь-якому електрону із хвильовим вектором ks, і швидкістю руху v, найдеться електрон із хвильовим вектором -ks, і швидкістю -vs.

Рис. 6.1. Ілюстрація до поняття

дірки у валентній зоні.

Припустимо тепер, що в зоні зайняті всі стани, крім одного, що характеризується вектором kі, і швидкістю руху vі (рис. 6.1). Сумарний струм в такій зоні буде рівний:

(5.3)

Оскільки перша складова правої частини рівняння рівна нулю, то:

(5.4), (6.4)

Із виразу (5.4) видно, що сумарний струм всіх електронів у зоні, що має один вакантний стан, еквівалентний струму, утвореному однією частинкою з позитивним зарядом +е, поміщеною в цей стан. Такі фіктивні частинки називаються дірками. Фіктивними вони є тому, що в дійсності не існують. Введення їх пояснюється тим, що вони дозволяють досить складну задачу про рух величезного числа електронів валентної зони по вакантних рівнях замінити значно більш простою задачею про рух невеликого числа дірок, що розташовуються на цих рівнях.

Дірки, як й електрони, мають ефективну масу. По абсолютній величині ефективна маса дірки дорівнює ефективній масі електрона, що раніше займав даний вакантний стан. Оскільки знак заряду дірки протилежний знаку заряду електрона, то для виникнення струму дірок, еквівалентного струму, створюваного колективним рухом електронів, знак ефективної маси дірок повинен бути протилежний знаку ефективної маси електронів, що розташовуються у вершини валентної зони. Як відомо, такі електрони мають негативну ефективну масу. Тому ефективна маса дірок повинна бути позитивною.

У табл. 6.1 наведені ефективні маси електронів і дірок, визначені методом циклотронного резонансу.

Таблиця 6.1. Ефективні маси дірок та електронів.

Тип кристала Електрони Дірки
Прокольна маса, mi Поперечна маса, mt Легкі важкі Важкі дірки
Германій 1,58 m 0,082 m 0,04 m 0,3 m
Кремній 0,7 m 0,19 m 0,16 m 0,5m
InSb Ефективна маса ізотропна та рівна 0,014m

Розділ 7. Домішкові рівні у напівпровідниках

Напівпровідники будь-якого ступеня очищення містять завжди домішкові атоми, що створюють свої власні енергетичні рівні, що одержали назву домішкових рівнів. Вони можуть розташовуватися як у дозволений так й у забороненої зонах напівпровідника на різних відстанях від вершини валентної зони й дна зони провідності. У ряді випадків домішки вводять свідомо для надання напівпровіднику потрібних властивостей.