Изучена температурно-структурная эволюция аморфных сплавов при высоких давлениях (до 700 атм) и различных температурах в области стабильности аморфной фазы и обнаружено явление индуцированного водородом полиаморфного распада на гидриды компонентов с образованием метастабильного гидрида палладия с ОЦК структурой и аморфной фазы гидрида циркония (рис.2).
Ранее индуцированные водородом фазовые превращения в металлической матрице (упорядочение и распад) наблюдались только в кристаллических системах.
Явление распада аморфного сплава при наводораживании высоким газовым давлением можно объяснить различным сродством к водороду компонентов сплава, так что сначала при низких температурах и давлениях образуется менее устойчивый (PdHx), а затем (при более высоких температурах и давлениях - более устойчивый гидрид ZrDx, причем оба в метастабильной форме.
Рис.3. Нейтронограммы сплавов при Т=475К и различных давлениях дейтерия.
С помощью механоактивации получены образцы аморфных фуллеренов и изучена их структурная стабильность по отношению к температурным воздействиям. При высокотемпературном (600-1600К) отжиге аморфных фуллеренов обнаружен полиаморфный переход из молекулярного стекла в атомарное, сопровождающийся исчезновением фуллеренных гало при малых углах рассеяния (рис.3).
При изучении взаимодействия водорода под давлением >100 атм и температуре выше 4000С с аморфными фуллеренами было установлено образование кристаллической гидридной фазы, содержащей около 4 вес% водорода (примерного состава С2Н). Структура этой фазы по данным рентгеновской и нейтронной дифракции оказалась
Рис.4. Переход из молекулярного стекла в атомарное графитоподобной с а ≈ 2агр, с ≈ сгр (аналогично интеркалатам щелочных металлов).
Фаза обладает ферромагнитными свойствами, обнаруживает линейное возрастание восприимчивости с температурой и довольно высокую коэрцитивную силу (НС>800 э). При этом в отличие от недавно обнаруженных ферромагнитных фаз высокого давления чистых и наводороженных фуллеренов ее структура и свойства остаются стабильными в течение, по крайней мере, 2-х лет. В то же время при взаимодействии аморфных фуллеренов с дейтерием возникает фаза с иной структурой и другими магнитными свойствами. С помощью нейтронрадиационного анализа обнаружено наличие Ni в некоторых магнитных образцах, что указывает на возможную примесную природу магнетизма.
Полученные результаты показывают, что в наноразмерных системах возможны фазовые переходы, изменение фазового состояния, фазовых границ и координации атомов отличные от превращений в кристаллических образцах.
Одним из наиболее эффективных способов модифицирования свойств материалов является их легирование. Однако его влияние на свойства сплавов ограничено, что связано с низкой растворимостью элементов в цинке. Применение сверхбыстрой закалки из расплава даёт возможность увеличить взаимную растворимость компонентов и тем самым усилить действие легирующих элементов [1]. В связи с этим представляет интерес исследовать влияние различных легирующих добавок на электрические свойства быстрозатвердевших цинковых сплавов.
Исследуемые в работе фольгиполучались сверхбыстрой закалкой из жидкой фазы инжектированием капли расплава (~ 0,2 г) на внутреннюю полированную поверхность быстровращающегося медного цилиндра с частотой 25 об/с. Для исследования использовались фольги толщиной от 30 до 80 мкм. Скорость охлаждения расплава, как показал расчет [2], была не менее 106 К/с.
На рис.1 представлены графики зависимости дифференциальной термо-ЭДС a от концентрации легирующего элемента.
Рис. 5. Зависимость термо-ЭДС a фольг сплавов бинарных систем на основе цинка от концентрации легирующего элемента.
Проведенные исследования показали, что в фольгах сплавов на основе цинка в результате образования пересыщенного твердого раствора предел растворимости элементов увеличивается и достигает 1 ат.% [3]. Как видно, образование пересыщенного твердого раствора в фольгах при легировании цинка ведет к возрастанию значения a в сплавах системы Zn-Cu, не изменяет его значения при легировании цинка кадмием, и вызывает уменьшение термо-ЭДС в сплавах систем Zn-Al, Zn-In, Zn-Sn и Zn-Ge.
Известно, что для металлов с валентностью 2 поверхность Ферми пересекает границы зоны Бриллюэна. Это означает, что первая зона заполнена не полностью, и у границ зоны Бриллюэна имеется область свободных состояний или дырок, а во второй зоне имеются занятые состояния у границ первой зоны [4]. В этом случае вклад в дифференциальную термо-ЭДС вносят электроны и дырки, и его значение описывается в рамках двухзонной электронной модели соотношением [5]:
(1) , (2)где
, , , - парциальные термо-ЭДС и проводимости дырок и электронов, n, m- подвижность дырок и электронов, причем >0, <0.В рамках теории функционала плотности при использовании приближения FP LMTO (full potential linear muffin-tin orbital method) с помощью оболочки M-studio ''LMTART 6.20'' [6, 7] проведены расчеты зонной структуры для Zn и сплавов Zn-Cd, Zn-Cu, Zn-Al, Zn-In, Zn-Sn, Zn-Ge в основном состоянии.
Результаты расчетов (рис.2) показали, что легирование цинка индием и алюминием, а также германием и оловом, принадлежащим к III и IV группам периодической системы элементов Д.И. Менделеева соответственно, ведет к смещению уровня Ферми (ЕF) вглубь зоны проводимости по сравнению с ЕF для чистого цинка. Данный факт означает, что вклад, вносимый электронами в термо-ЭДС, возрастает, и модуль слагаемого ansn в формуле (2) увеличивается. Это, в свою очередь, и приводит к уменьшению значения a в сплавах систем Zn-Al, Zn-In, Zn-Sn, Zn-Ge. При легировании цинка медью положение уровня Ферми понижается (рис.2 б), а значит, вклад дырок в термо-ЭДС возрастает. Исходя из формулы (1), значение a при этом также должно увеличиваться, что и подтверждается данными эксперимента (рис.1). Положение ЕF в сплавах системы Zn-Cd не изменяется при возрастании концентрации кадмия. При этом значение термо-ЭДС a этих сплавов также не изменяется.
а) б)
в) г)
а) - Zn; б) - Zn- 5 ат.% Cu; в) - Zn - 5 ат.% In; г) - Zn - 5 ат.% Sn;
Рис.6. Зонная структура цинка и его сплавов
Таким образом, образование пересыщенного твердого раствора в фольгах не изменяет значения термо-ЭДС a в сплавах системы Zn-Cd, ведет к возрастанию его значения при легировании медью. В сплавах систем Zn-Al, Zn-In, Zn-Sn и Zn-Ge наблюдается уменьшение термо-ЭДС вследствие изменения концентрации носителей заряда.
1. В.А. Васильев, Б.С. Митин, И.Н. Пашков, М.М. Серов, А.А. Скуридин, А.А. Лукин, В.Б. Яковлев. Высокоскоростное затвердевание расплава (теория, технология и материалы). / Под ред. Б.С. Митина. СП интермет инжиниринг, М. (1998). 400 с.
2. И.С. Мирошниченко. Закалка из жидкого состояния. Металлургия, М. (1982). 168 с.
3. В.В. Лозенко, В.Г. Шепелевич. ФХОМ 4, 67 (2006).
4. А. Крэкнелл, К. Уонг. Поверхность Ферми. Атомиздат, М. (1978).352 с.
5. В.М. Драко, В.И. Прокошин, В.Г. Шепелевич. Основы фононных и электронных процессов в кристаллах. Гомельский центр науч.-техн. инф-ции, (1999). 248 с.
6. S.Y. Savrasov, D.Y. Savrasov. Phys. Rev. В46,864 (1992).
7. O.K. Andersen. Phys. Rev. В12, 3060 (1975).