Розрахунок й експерименти показали, що максимальнанапруга на р+рпп+-структурі в процесі обриву струмузвичайно становить 750-850 В і для генерації високовольтних імпульсів необхідно з'єднувати послідовно велику кількість діодів. Спеціально проведені дослідження дозволили встановити, що можливий технологічний розброс у ширині р-області не приводить до істотної різниці в напругах на діодах, оскільки, хоча в структурах з більшою глибиною рп-перехода процес формування ООЗ починається пізніше, розширення цієї області відбувається швидше, ніж при меншій глибині переходу, і на завершальній стадії процесу різниця в напругах невелика (~ 4 %). Тому SOS-діоди можуть з'єднуватися послідовно без яких-небудь зовнішніх дільників напруги. Типова конструкція зборкиSOS-діодів показана на рис. 3.5, а в таблицінаведені основні характеристики зборок, які випускаються на даний час промисловістю. Переривач являє собою послідовну збірку елементарних діодів, стягнутих між собою діелектричними стяжками між двома вихідними пластинами – електродами. Кожен елементарний діод складається з охолоджувача, на який напаяно кілька послідовних напівпровідникових структур.
Типова осцилограма зворотного струму через SOS-діод із площею структури 1 см2. Величина розривного струму складає 5,5 кА, час обриву струму за рівнем 0,1 – 0,9 від амплітуди – 4,5 нс. Швидкість комутації - 1200 кА/мкс, що приблизно на 3 порядки перевищує швидкість наростання струму у звичайних швидкодіючих тиристорах.
Самий потужний прилад при площі структури 4 см2 має робочу напругу 200 кВ й обриває струм величиною 32 кА, що відповідає розривній потужності 6 ГВт. Показаний прилад, розроблений для високої частоти проходження імпульсів у постійному режимі. Прилад має більш розвинену систему охолоджувачів, він створений для розриву струмів величиною 1-2 кА при напрузі 100-120 кВ із частотою проходження імпульсів 2 кГц. Прилад на поз. 5 розроблений для формування імпульсів тривалістю декілька наносекунд. При короткому часі накачування він обриває струм величиною 1 кА за 500 пс.
Таблиця 3.1. Параметри SOS-діодів
Параметр | Значення |
Робоча напруга | 60 - 250 кВ |
Кількість послідовних структур | 80 - 320 |
Площа структури | 0,25 - 4 см2 |
Густина прямого струму | 0,4 - 2 кА/ см2 |
Густина розривного струму | 2 - 10 кА/ см2 |
Час прямої накачки | 300 - 600 нс |
Час зворотної накачки | 40 - 150 нс |
Час обриву струму | 1 - 10 нс |
Розсіювана потужність | 50 - 500 Вт |
Довжина | 80 - 220 мм |
Маса | 0,1 - 0,6 кг |
Дослідження й експлуатація розробленихSOS-діодів у складі різних імпульсних генераторів показали їх надзвичайно високу надійність і здатність витримувати багаторазові перевантаження по струму й напрузі; при цьому частота проходження імпульсів може бути доведена до 104 Гц. Були проведені спеціальні стендові випробування з метою навмисного виводуприладів з ладу. Виявилося, що збільшення густини струму й швидкості його введення на порядок (з 5 до 50 кА/см2) приводить лише до збільшення втрат енергії на стадії накачування й зниження ефективності роботи переривачаструму, не виводячи їх з ладу. При цьому структури працюють як активний опір, що обмежує струм накачки, оскільки при таких густинах струму процес модуляції бази супроводжується виникненням більших прямих напруг. Спроби вивести SOS-діод з ладу за допомогою високої робочої напруги (приладз робочою напругою 120 кВ встановлювався в генератор з вихідною напругою 450 кВ) показали, що при обриві струмуSOS-діод працює як обмежувач напруги (амплітуда імпульсу не перевищувала 150 кВ), споживаючи при цьому енергію з конденсатора накачування. Модельні розрахунки для такого режиму роботи встановили різке збільшення інтенсивності процесів лавинного розмноження носіїв в областіз електричним полем і відповідне зниження опору структури на стадії обриву струму.
На основі SOS-діодів розроблено велику кількість потужних генераторів імпульсів для різних областей сучасної техніки.До появи SOS-діодів такий рівень параметрів у напівпровідниковійнаносекундній імпульсній техніці уявлявся неможливим. Можливості використання SOS-діодів у генераторах потужнихнаносекундних імпульсів істотно поліпшуються при використанні магнітних ключів і магнітних компресорів.
Всіописані вище потужні розмикачі виконані на основі базового матеріалу всієї напівпровідникової електроніки - монокристалічного кремнію. Однак в останні 5-6 років з'явилася реальна можливість створення силової напівпровідникової електроніки й, зокрема, потужної імпульсної техніки на основі монокристалічного карбіду кремнію (SiС).
Ширина забороненої зони, наприклад, уполітипу4Н-SiС дорівнює 3,24 еВ, тобто значно більше, ніж вSi (1,12 еВ), і тому гранична робоча температура, щообмежується швидкістю теплової генерації носіїв, уSiС-приладів приблизно втроє вища, ніж укремнієвих (~ 600 °С замість 200°С). Критичне поле лавинного пробою в SiС на порядок перевищує значення для Si; швидкість насичення електронів приблизно вдвічі, а теплопровідність приблизно втроє вище, ніж у кремнія. Такий комплекс переваг дозволяє, у принципі, різко підняти швидкодію, потужність і надійність всіх приладів силової електроніки. Роботи в цьому напрямку ведуться у багатьох лабораторія світу і до теперішнього часу експериментально доведена можливість створення SiС-аналогів усіх без винятку кремнієвих приладів силової електроніки.
Можливість створення SiС-аналога кремнієвогоДДРВ була вперше продемонстрована в [4,11]. р+піп+- і р+роп+-структури 4Н-SiС були вирощені осадженням з газової фази на п+-підкладках при температурі 1500° С. Базова областьп-типа товщиною 40 мкм мала концентрацію легуючої домішки (азоту) п0= (3-5)·1014 см-3, а 12-мікронна областьр-типу мала концентрацію алюмінію 8·1014 см-3, діаметр діодів був рівним 0,6 мм. Осцилограми процесу відновлення при постійному прямому струмі 0,4 А .
У р+роп+-структурі спостерігається різкийсубнаносекундний обрив зворотного струму, що наростає за 10 нс до амплітуди 0,8 А, а в п+пор+-структурі процес обриву триває ~ 12 нс. Ці результати були, загалом кажучи, передбачувані, оскільки в епіиаксіальних структурах з різкимиблокуючими р+по- і р+по-переходами й дуже великою різницею в рухливостях електронів і дірок (
в 4Н-SiС) швидкий обрив зворотного струму можливий тільки в тому випадку, коли через блокуючий перехід протікає електроний струм. Чисельний розрахунок процесу відновленняпоказав, що в р+п0п+-структурі з різкими переходами заднійплазмовий фронт утвориться (як й у кремнієвих ДДРВ) поблизу р+ро-переходу й приходить до блокуючого п+ро-переходураніше, ніж там спадає до нуля концентрація плазми. Після приходу фронту в приладі більше не залишається плазми, і зворотний струмпротікає тільки за рахунок відходу основних носіїв від п+ро-перехода, що приводить до швидкого утворенняООЗ й обривуструму.Прості оцінки показують, що характеристики розриваючогоключа на основі SiС можуть бути дуже високими. Наприклад, одиночний р+роп+-діод з напругою пробою 10 кВ (товщина бази Wр0<< 100 мкм, концентрація донорів Nd= 7· 1014 см-3) буде мати граничний час обриву струму близько 1 нс й густину зворотного струму
А/см2.SOS-розмикачі, у принципі, теж можуть бути виконані на основі SiС. Для цього необхідно при вирощуванні р+рпоп+- або п+прор+-структур забезпечити необхідний градієнт концентрації легуючої домішки в р- або п-шарі шляхом програмної зміни вмісту легуючої домішки в газовому потоці при вирощуванні цих шарів. Такий процес досить складний, і робіт зі створення SiС -аналоговкремнієвого SOS-діода поки ще не проводилося.
Для проведення досліджень сучасна експериментальна фізика потребує потужних джерел живлення лазерів та прискорювачів заряджених частинок, рентгенівських апаратів та генераторів надвисокочастотних імпульсів. Стандартним способом формування таких імпульсів є попереднє, порівняно повільне, нагромадження енергії в спеціальному пристрої, а потім швидка його комутація на навантаження. Найчастіше в таких завданнях використаються ємнісні накопичувачі. Однак можуть застосовуватися й інші типи накопичувачів, зокрема, індуктивні накопичувачі, які мають незаперечні переваги перед ємнісними накопичувачами.
Істотним стримуючим фактором на шляху використання індуктивних накопичувачів, до останнього часу, була відсутність ключів, які могли б розривати великі струми і відразу після цього витримувати без пробою високі зворотні напруги. У пристроях, що формують імпульси з енергією до одиниць мегаджоулів і більше, як переривачі і дотепер ще використаються провідники, які у певний момент часу згоряють. Однак такі комутатори мають досить обмежену область застосування й практично не використовуються широко.