Оптична різниця ходу
де
Для знаходження результуючої амплітуди від всіх смуг, яка буде збуджуватися в точці М (рис.3), використаємо формулу результуючої амплітуди при інтерференції багатьох хвиль
де
Розглянемо випадок, коли
Формула (12) з урахуванням (13) перепишеться
Оскільки інтенсивність світлових хвиль
Знайдемо умови мінімуму й максимуму дифракції світлових хвиль, які приходять у точку М (рис.3) від однієї щілини. У точці М інтенсивність світлових хвиль буде дорівнювати нулю, якщо
де b – ширина щілини;
Умова (16) є умовою мінімуму дифракції від однієї щілини.
У точці М буде спостерігатись максимум дифракції, якщо
Умова (17) є умовою максимуму дифракції від однієї щілини.
Покажемо залежність амплітуди хвиль, які проходять від однієї щілини в точку накладання, від кута дифракції
а) Якщо підставити в (12) значення кута дифракції
Якщо підставити цей результат в (12) одержимо
Відповідно інтенсивність хвиль буде дорівнювати
б) Якщо
в) Якщо
3. Дифракційна решітка. Кутова дисперсія і роздільна здатність дифракційної решітки
Дифракційною решіткою називається оптичний прилад, який складається з великої кількості однакових щілин, розділених між собою однакової ширини непрозорими проміжками. Відстань d між серединами двох сусідніх щілин, називається сталою дифракційної решітки.
Якщо розмістити паралельно решітці збірну лінзу, то в її фокальній площині на екрані можна буде спостерігати результати дифракції світла від решітки (рис.4).
Оптична різниця ходу променів від двох сусідніх щілин дорівнює
Оптична різниця фаз в цьому випадку буде дорівнювати
В точку P на екрані приходять промені від усіх щілин. Всі ці промені зсунуті по фазі на однакову величину
Для знаходження результуючої амплітуди всіх хвиль, які прийшли в точку Р слід скористатися формулою результуючої амплітуди при інтерференції багатьох хвиль
Рис. 4
З урахуванням (22) результуюча амплітуда
де
Проведемо аналіз формули (24).
а) Якщо вираз у знаменнику (24) досягає мінімуму, тобто буде дорівнювати нулю, то амплітуда
звідки
Формула (25) є умовою головних максимумів дифракції на дифракційній решітці.
б) Побічні максимуми дифракції можна одержати, якщо чисельник у формулі (24) досягає максимуму. Це можливо за умови, коли
Після скорочення одержимо
Вираз (27) є умовою побічних максимумів дифракції на дифракційній решітці.
в) Побічні мінімуми дифракції на дифракційній решітці одержуємо із умови коли чисельник формули (25) буде найменшим, тобто коли
звідки
Формула (29) є умовою побічних мінімумів на дифракційній решітці.
Дифракція світла на дифракційній решітці, яка має N щілин показана на рис.5.
Рис.5
Розрахунки показують, що
Важливо знати:
а) Внаслідок немонохроматичності біле сонячне світло після проходження дифракційної решітки дає максимуми ІІ, ІІІ і більш високих порядків у вигляді спектрів.
б) Хороша решітка з малим d і великим N дає дифракційні спектри з великою роздільною здатністю. Характерною ознакою дифракційних спектрів є рівномірний розподіл кольорів у спектрі. На відміну від дифракційного спектра, призматичний спектр стиснутий в області червоних кольорів і розширений в області фіолетових кольорів.
Кожна дифракційна решітка характеризується кутовою дисперсією, яка позначається буквою Д
де