2) Волновое сопротивление контура
На резонансной частоте, откуда
Обычно волновое сопротивление ПК, используемых в электрических цепях, имеет порядок несколько сотен Ом (100
3) Добротность контура
По определению
Т.к. на резонансной частоте численные значения проводимостей и
4) Резонансное сопротивление контура, токи в ветвях при резонансе
Действительно, полное сопротивление контура равно:
Определим соотношение между током источника и током через реактивный элемент:
Аналогично можно показать, что
Вывод:При резонансе токи в ветвях параллельного КК максимальны и в Q раз больше тока источника. Этим и объясняется название режима – резонанс токов.
При резонансной частоте задающий токисточника замыкается через элемент проводимости контура. Токи же в реактивных элементах контура взаимно компенсируют друг друга относительно внешней цепи контура, или, аналогично, что при резонансной частоте круговой ток замыкается через реактивные элементы контура. При этом , а
наибольшее по величине. При резонансе напряжение на контуре максимально (
4. Комплексные передаточные функции параллельного контура
Выражения для частотных характеристик параллельно колебательного контура относительно напряжения, можно получить из следующей комплексной передаточной функции:
Преобразуемзнаменатель
Здесь частотно-зависимым является множитель
C учетом этого:
Из выражения
АЧХ:
и ФЧХ:
АЧХ называют резонансной характеристикой параллельно колебательного контура. Максимальное значение эта характеристика имеет при резонансной частоте (
Резонансную характеристику контура принято нормировать относительно ее максимального значения. Нормированная резонансная характеристика: т.е. отношение амплитуду напряжения при заданной частоте к амплитуде напряжения при резонансе:
Нормированная резонансная характеристика есть не что иное, как АЧХ контура относительно тока в элементе активного сопротивления.
Найдем приближенное выражение для частотных характеристик колебательного контурасо схемой замещения, показанной на рисунке 8.
Она отличается от схемы замещения параллельного колебательного контура тем, что в ней потери в индуктивности реального контура учитываются сопротивлением, включенным последовательно с индуктивностью. Для рассматриваемого контура:
В области частот, в которой реактивная составляющая сопротивления катушки индуктивности немного превышает по величине активную составляющуюеё сопротивления, можно пренебречь слагаемым
в числителе последнего выражения.
Рис. 9
Полученная приближенная формула не отличается от строгой формулы для комплексной передаточной функции параллельного контура с теми же значениями индуктивности L и емкости С и c активной проводимостью:
Заключение
Рассмотренные режимы установившихся гармонических колебаний в параллельном колебательном контуре позволяют дать физическое объяснение АЧХ и ФЧХ. Частотные характеристики параллельного колебательного контура остаются приближенно верными также и для иных схем замещения реальных колебательных контуров, если интересоваться поведением характеристик в сравнительно узкой полосе частот.
Литература, используемая для подготовки к лекции: Белецкий А.Ф. Теория линейных электрических цепей. – М.: Радио и связь, 1986. (Учебник); Бакалов В.П. и др. Теория электрических цепей. – М.: Радио и связь, 1998. (Учебник); Качанов Н.С. и др. Линейные радиотехнические устройства. М.: Воениздат, 1974. (Учебник); В.П. Попов Основы теории цепей – М.: Высшая школа, 2000.(Учебник)