Смекни!
smekni.com

Гальванические элементы (стр. 2 из 6)

Гальванические элементы с подобным составом реагентов в щелочном электролите (КОН) имеют лучшие выходные характеристики, но они неприменимы в портативных устройствах в силу экологической опасности. Еще более выгодными характеристиками обладают серебряно-цинковые элементы Ag-Zn, но они чрезвычайно дороги, а значит, экономически неэффективны. В настоящее время известно более 40 различных типов портативных гальванических элементов, называемых в быту «сухими батарейками».

2. Электрические аккумуляторы

Электрические аккумуляторы (вторичные ХИТ)— перезаряжаемые гальванические элементы, которые с помощью внешнего источника тока (зарядного устройства) можно перезарядить.

Аккумуляторы – это устройства, в которых под воздействием внешнего источника тока в системе накапливается (аккумулируется) химическая энергия (процесс зарядки аккумулятора), а затем при работе устройства (разрядка) химическая энергия снова превращается в электрическую. Таким образом, при зарядке аккумулятор работает как электролизер, а при разрядке – как гальванический элемент.

В упрощенном виде аккумулятор представляет собой два электрода (анод и катод) и ионный проводник между ними – электролит. На аноде как при разряде, так и при заряде протекают ре6акции окисления, а на катоде – реакции восстановления.

До последнего времени по-прежнему наиболее распространенными в России, да и в Приднестровье, остаются кислотные свинцовые и щелочные никель-кадмиевые и никель-железные аккумуляторы.


Электроды в нем представляют собой свинцовые решетки, из которых одна заполняется в порах порошком оксида свинца IV – PbO2. Электроды соединены с электролитом через пористый сепаратор. Всеь аккумулятор помещается в бак из эбонита или полипропилена.

При работе такого устройства в нем происходят следующие электродные процессы:

А).Разрядка или работа аккумулятора как источника электрической энергии.

На аноде: (–) Pb – 2ē → Pb2+;

на катоде: (+) PbO2 + 4H+ + 2ē → Pb2+ + 2H2O.

Образующиеся на электродах катионы свинца взаимодействуют с анионами электролита с выделением белого осадка сульфата свинца

Pb2+ + SO42– = ↓PbSO4.

Суммарная токообразующая реакция процесса разрядки аккумулятора:

Pb + PbO2 + 2H2SO4 = 2PbSO4↓ + 2H2O,


а схема работающего аккумулятора как гальванического элемента имеет вид (–) Pb|PbSO4||PbO2 (+).

Напряжение на клеммах работающего аккумулятора достигает величины 2,0÷2,5В. В процессе эксплуатации устройства электролит расходуется, а в системе накапливается осадок. Когда концентрация активных ионов водорода [Н+] становится критической для реакции на катоде, аккумулятор прекращает свою работу.

Б).Зарядка или восстановление химического потенциала аккумулятора для последующего его преобразования в электрическую энергию. Для этого аккумулятор подсоединяют к внешнему источнику тока таким образом, что к клемме «анод» подается отрицательный полюс, а к клемме «катод» - положительный. В этом случае на электродах под действием внешнего напряжения возникают обратные процессы, восстанавливающие их до первоначального состояния.

Металлический свинец восстанавливает поверхность электрода (–): PbSO4 + 2ē → Pb + SO42;

Образующийся оксид свинца IV заполняет поры свинцовой решетки (+): PbSO4 + 2H2O – 2ē → ↓PbO2 + 4H+ + SO42.

Суммарная восстановительная реакция: 2PbSO4 + 2H2O = Pb + PbO2 +2H2SO4.

Определить момент окончания процесса зарядки аккумулятора можно по появлению пузырьков газа над его клеммами («кипение»). Это связано с возникновением побочных процессов восстановления катионов водорода и окисления воды с ростом напряжения при восстановлении электролита:

2Н+ + 2ē → Н2↑; 2Н2О – 4ē → О2↑ + 2Н2↑.

Коэффициент полезного действия аккумулятора достигает 80% и рабочее напряжение длительное время сохраняет свое значение.

ЭДС аккумулятора может быть рассчитана по уравнению:


RT α4(H+)·α2(SO42–)

EЭ = EЭ0 + –––– ℓn –––––––––––––– (твердые фазы в Сравн. не

2F α2(H2O) учитываются).

Надо заметить, что в аккумуляторе нельзя использовать концентрированную серную кислоту (ω(H2SO4) > 30%), т.к. при этом уменьшается ее электрическая проводимость и увеличивается растворимость металлического свинца. Свинцовые аккумуляторы широко используются в автомобильном транспорте всех типов, на телефонных и электрических станциях. Однако из-за высокой токсичности свинца и его продуктов, свинцовые аккумуляторы требуют герметичной упаковки и полной автоматизации процессов их эксплуатации.

А) В щелочных аккумуляторах положительный электрод изготавливается из никелевой решетки, пропитанной гелеобразным гидрооксидом никеля II Ni(OH)2; а отрицательный – из кадмия или железа. Ионным проводником служит 20%-ый раствор гидрооксида калия КОН. Суммарные токообразующие и генерирующие реакции в таких аккумуляторах имеют вид:

разряд

2NiOOH + Cd + 2H2O ◄======►2Ni(OH)2 + Cd(OH)2; ЕЭ0 = 1,45В.

заряд

разряд

2NiOOH + Fe + 2H2O ◄======►2Ni(OH)2 + Fe(OH)2; ЕЭ0 = 1,48В.

заряд

К достоинствам этих аккумуляторов относят большой срок их службы (до 10 лет) и высокую механическую прочность, а к недостаткам – невысокие КПД и рабочее напряжение. Щелочные аккумуляторы используются для питания электрокар, погрузчиков, рудничных электровозов, аппаратуры связи и электронной аппаратуры, радиоприемников. Вспомним также, что кадмий является высокотоксичным металлом, что требует соблюдения правил безопасности при утилизации отработанных устройств.

В последние годы активно разрабатываются аккумуляторы с литиевым отрицательным электродом, неводным электролитом и положительным электродом, состоящим из оксидов V2O3; NiO; CoO; MnO2. Они используются в электронной слаботоковой аппаратуре.

3. Топливные элементы

Топливные элементы (электрохимические генераторы)— устройства, подобные гальваническому элементу, но отличающееся от него тем, что вещества для электрохимической реакции подаются в него извне, а продукты реакций удаляются из него, что позволяет ему функционировать непрерывно.

Следует заметить, что деление элементов на гальванические и аккумуляторы до некоторой степени условное, так как некоторые гальванические элементы, например щелочные батарейки, поддаются подзарядке, но эффективность этого процесса крайне низка.

По типу используемого электролита химические источники тока делятся на кислотные (например свинцово-кислотный аккумулятор, свинцово-плавиковый элемент), щелочные (например ртутно-кадмиевый элемент, никель-цинковый аккумулятор) и солевые (например, марганцево - магниевый элемент, цинк - хлорный аккумулятор).

А) Принцип действия

Если окислитель и восстановитель хранятся вне гальванического элемента и в процессе работы непрерывно подаются к инертным электродам (графитовым стержням, не участвующим в токообразующих реакциях, а являющихся лишь переносчиками электронов), то такой генератор может работать длительное время с постоянным значением вырабатываемого напряжения. В топливных элементах химическая энергия восстановителя (топлива) и окислителя, непрерывно и раздельно подаваемых к электродам, непосредственно превращается в электрическую энергию. Удельная энергия топливного элемента (количество вырабатываемого электричества на 1 моль количества химического вещества) значительно выше, чем у гальванического элемента.

В качестве топлива (восстановителя) в элементах используются жидкие или газообразные водород Н2, метанол СН3ОН, метан СН4, а в качестве окислителя – кислород О2 из воздуха. Электролитом служит раствор кислоты или щелочи. Устройство топливного элемента схематично представлено на рисунке:

Рисунок: Схема устройства работающего топливного элемента.

Если электролитом в топливном элементе является кислота, то в системе будут проходить следующие окислительные и восстановительные процессы:

на аноде (–): Н2 – 2ē → 2Н+;

на катоде (+): О2 + 4Н+ + 4ē → 2Н2О, следовательно,

суммарная токообразующая реакция 2Н2 + О2 = 2Н2О.

Схема работающего кислородно-водородного кислотного топливного элемента имеет вид: (–) (C)Н2|2H+||2H2O|O2(C) (+).

Если же электролитом в элементе является щелочь, то процессы несколько изменяются:

на аноде (–): 2Н2 + 4ОН– – 4ē → 4Н2О;

на катоде (+): О2 + 2Н2О + 4ē → 4ОН–, но суммарная токообразующая реакция остается прежней 2Н2 + О2 = 2Н2О.

Схема работающего кислородно-водородного щелочного топливного элемента имеет вид: (–) (С)Н2|2H2O||4OH–|O2(C) (+).

В результате протекания указанных реакций в топливном кислородно-водородном элементе генерируется постоянный ток 1,23÷1,50В.

Для уменьшения электрического сопротивления в системе применяются реагенты с высокой электрической проводимостью, либо жидкие электролиты меняются на твердые или расплавы.

В отличие от гальванических, топливные элементы не работают без вспомогательных устройств, обеспечивающих бесперебойный подвод реагентов и отвод продуктов электролиза. Для увеличения напряжения U и силы тока I в генераторе топливные элементы соединяют в батареи. В результате получается сложная система, включающая дополнительные устройства подвода и отвода реакционной смеси, поддержания и регулирования температуры, преобразователи тока и напряжения. Ее называют электрохимической энергоустановкой (ЭХЭ).ЭХЭ имеют КПД в 1,5-2,0 раза выше по сравнению с тепловыми машинами, при этом являются экологически безупречными. Именно поэтому (Н2-О2) – ЭХЭ применяют на космических кораблях, да еще и учитывая тот факт, что продукт токообразующей реакции – Н2О – служит источником питьевой воды для космонавтов. В России работают ЭХЭ и электростанции мощностью от 40кВт до 11мВт, в которых используется природное топливо (залежи природного газа и отходы нефтепереработки).