Нижегородский региональный центр энергосбережения при НГТУ
Влияние погрешности трансформаторов тока и напряжения на коммерческие потери в энергосистемах
А.Б. Лоскутов,
Е.Б. Солнцев,
И.В. Озеров
Спад производства последних лет привел к уменьшению нагрузок в ряде узлов энергосистемы, а также снижению потребления промышленностью, что в свою очередь вызвало возникновение отрицательной погрешности в автоматизированных системах контроля и учета электроэнергии (АСКУЭ).
Причиной тому стало возникновение отрицательной погрешности у первичных датчиков тока и напряжения, в качестве которых используются трансформаторы тока и напряжения.
Данная работа посвящена исследованию причин возникновения погрешностей и способам устранения недоучета электропотребления в системах АСКУЭ.
Погрешности трансформаторов тока (токовая и угловая) обусловлены наличием тока намагничивания и рассчитываются по формулам [1, 2]: токовая погрешность
(1)где lм - средняя длина магнитного потока в магнитопроводе, м; z2 - сопротивление ветви вторичного тока (полное сопротивление вторичной цепи и вторичной обмотки), Ом; f - частота переменного тока, Гц; Sм - действительное сечение магнитопровода, м2; j - угол потерь, а a - угол сдвига фаз между вторичной э. д. с. Е2 и вторичным током I2, град.; угловая погрешность
(2)Основное влияние на величины погрешностей трансформаторов тока оказывают их загрузка по току и величина сопротивления вторичной цепи. В условиях снижения потребления электроэнергии промышленными предприятиями загрузка трансформаторов тока часто не превышает 5 - 15%, что приводит к значительному увеличению погрешностей.
Предельные значения токовой и угловой погрешностей трансформаторов тока для измерений (по ГОСТ 7746-89) приведены в таблице.
Класс точности | Первичный ток,% номинального | Предельная погрешность | Вторичная нагрузка,% номинальной, при cos j2=0,8 | ||
токовая | угловая | ||||
мин | град | ||||
0,2 | 5 10 20 100-200 | ±0,75 ±0,50 ±0,35 ±0, 20 | ±30 ±20 ±15 ±10 | ±0,9 ±0,6 ±0,4 ±0,3 | |
0,5 | 5 10 20 100-200 | ±1,5 ±1,0 ±0,75 ±0,5 | ±90 ±60 ±45 ±30 | ±2,5 ±1,7 ±1,35 ±0,9 | 25-100 |
Результаты расчета угловой и токовой погрешностей трансформаторов тока типа ТПОЛ 600/5, класса точности 0,5, произведенные по формулам (1) и (2), показаны на рис.1 и 2 (тонкая линия - расчетная кривая, жирная линия - аппроксимация). Вид аппроксимирующего выражения и критерий согласия расчетной и аппроксимирующей кривых представлены на рисунках.
Рис.1
Рис.2
Для диапазонов изменения (1 - 10% и 10 - 100%) первичного тока от номинального значения математические модели токовой погрешности наиболее распространенных трансформаторов тока имеют вид:
ТПОЛ10 - 600/5 Df [%] = 0,8428 * ln I1 - 1,9617 для 1 < I1 < 10% Df [%] = 0,0841 * ln I1 - 0,3919 для 10 < I1 < 100%
ТЛШ10 - 2000/5 Df [%] = 0,7227 * ln I1 - 1,6815 для 1 < I1 < 10% Df [%] = 0,0722 * ln I1 - 0,3353 для 10 < I1 < 100%
ТПШФД10 - 3000/5 Df [%] = 0,5986 * ln I1 - 1,2261 для 1 < I1 < 10% Df [%] = 0,0597 * ln I1 - 0,1111 для 10 < I1 < 100%
Значения первичного тока I1 трансформатора тока в формулы следует подставлять в процентах от номинального значения.
Исследования погрешностей трансформаторов тока проведенные в НИЦЭ, показали приемлемую сходимость теоретических и экспериментальных результатов. На рис.3 приведены результаты экспериментального исследования ТТ типа ТПЛМ10-200/5, класса точности 0,5.
Результаты исследования токовых погрешностей различных типов трансформаторов тока с первичным номинальным током 75 - 600 А позволило сделать следующие выводы:
Рис.3
в диапазоне изменения первичного тока от номинального значения 1 - 25% токовая погрешность имеет отрицательный знак;
с увеличением первичного тока абсолютное значение токовой погрешности уменьшается;
экспериментальные исследования подтверждают правильность математической модели токовой погрешности трансформатора тока;
учет токовой погрешности трансформатора тока в АСКУЭ позволит уменьшить величину небаланса по подстанциям;
количество электроэнергии, отпускаемой потребителям, из-за отрицательной токовой погрешности трансформаторов тока занижено по сравнению с фактической величиной; поэтому учет токовой погрешности трансформатора тока в АСКУЭ позволит более точно оценивать величину отпускаемой потребителям электроэнергии и получить определенный экономический эффект, который будет оценен далее.
Вторым источником погрешности измерения электроэнергии является трансформатор напряжения.
Согласно [3, 4] погрешность по напряжению определяется следующим образом: DU = DUн+DUх (3) где DUн - погрешность по напряжению, обусловленная током нагрузки, %; DUх - погрешность по напряжению, обусловленная током холостого хода, %.
Используя векторную диаграмму, можно с достаточной точностью выразить составляющие погрешности трансформатора напряжения следующим образом:
где U2 - напряжение вторичной обмотки трансформатора, В; Ia - активная составляющая тока холостого хода, приведенная к вторичной обмотке трансформатора, А; r'1 - приведенное сопротивление первичной обмотки трансформатора, приведенное ко вторичной обмотке, Ом; I'p - приведенная реактивная составляющая тока холостого хода, приведенная ко вторичной обмотке трансформатора, А; x'1 - реактивное сопротивление первичной обмотки трансформатора, приведенное ко вторичной обмотке, Ом; I2 - ток нагрузки трансформатора, А; r2 - сопротивление вторичной обмотки трансформатора, Ом; cosj2 - коэффициент мощности нагрузки, отн. ед.; x - индуктивное сопротивление трансформатора, Ом.
Угловая погрешность трансформатора напряжения определяется как
,где d'x - угловая погрешность, обусловленная током холостого хода; d'н - угловая погрешность, обусловленная током нагрузки.
Составляющие угловой погрешности определяются как
;Результаты расчета погрешностей трансформатора напряжения показаны на рис.4 и 5. Основное влияние на погрешность трансформатора напряжения оказывает величина вторичной загрузки I2.
Рис.4
Зависимость погрешности трансформатора напряжения от коэффициента загрузки по мощности (отношение фактической нагрузки вторичной обмотки трансформатора напряжения к номинальной величине нагрузки) имеет вид
DU [%] = - 0,73 * Кз + 0,35,
где Кз - загрузка трансформатора напряжения по вторичной обмотке, отн. ед.
Полученные выражения для погрешностей трансформаторов тока и трансформаторов напряжения позволяют увеличить точность учета электроэнергии на подстанциях.
Эффективность внедрения АСКУЭ на подстанции зависит от затрат на внедрение АСКУЭ; от экономического эффекта, полученного в результате внедрения. В настоящее время учет отпущенной электроэнергии и расчет энергетического баланса на большинстве подстанций ведется при помощи электромагнитных счетчиков без учета погрешностей трансформаторов тока и трансформаторов напряжения. Часто трансформаторы напряжения работают при загрузке вторичной обмотки, превышающей номинальную в несколько раз, т.е. с отрицательной погрешностью. Большую часть нагрузки трансформатора напряжения составляют измерительные приборы, подключенные к ним, в частности электромагнитные счетчики активной энергии. Например, на подстанции "Свердловская" установлены индукционные счетчики типа САЗУ-И670М, потребляемая мощность которых 4 Вт. В результате внедрения АСКУЭ индукционные счетчики будут заменены на электронные - типа ПСЧ, потребляемая мощность которых в два раза меньше - 2 Вт.
В этом случае коэффициент загрузки трансформатора напряжения снижается в два раза до значения 1,1 и, следовательно, снижается погрешность трансформатора напряжения с 1,15% до 0,5%. Снижение погрешности трансформатора напряжения приведет к повышению точности учета отпущенной потребителям электроэнергии.
Учет токовых погрешностей трансформаторов тока и напряжения в системе АСКУЭ дает экономический эффект. Для оценки экономического эффекта от внедрения АСКУЭ был произведен оценочный расчет годового потребления электроэнергии по подстанции "Свердловская" с учетом погрешностей трансформаторов тока и напряжения. Расчет производился следующим образом:
По имеющимся данным за характерные зимние и летние сутки года (1997 и 1998 гг.) рассчитывались почасовые значения активной мощности (с учетом погрешностей трансформаторов тока и напряжения) по вводам и отходящим линиям по формуле
Рфакт = P * КI * KU,
где Р - среднечасовые значения мощности, определяемые по показаниям электросчетчиков;
KI - коэффициент, учитывающий токовую погрешность трансформатора тока, KU - коэффициент, учитывающий погрешность трансформатора напряжения.
KI = 1 - (DfI /100), KU = 1 - (DfU /100),
где DfI - токовая погрешность трансформатора тока, DfU - погрешность трансформатора напряжения.
Определялось потребление электроэнергии за характерные зимние и летние сутки с учетом погрешностей трансформаторов тока и напряжения (Wз. факт и Wл. факт) и без учета погрешностей (Wз и Wл) по вводам и отходящим линиям: