Смекни!
smekni.com

Високотемпературні надпровідні схеми інтегральних мікросхем (стр. 4 из 6)

Тести малого масштабу схеми, навіть нижче, індуктивності L□ = 0,8 рН. Як і в структурі, показаній на рис.13, базовий електрод YBCO в структурі виступає як YBCO. Таким чином, ця структура не вимагає додаткові площини землі. Така ж структура використана в роботах.

CAM технології, які використовуються природним наслідком низької індуктивності:

Рис.13 Креслення DC SQUID

Рис.14 Схематичний перетин YBCO / PbCO / YBCO. Рампа краю переходу інтегрована з верхньою площиною землі "HUG структури".

Описані вище літаки землею поховані під переходах, і Товщина поховали літаки земля була бути нижче 200 нм, оскільки товщі землі привели в літаках більше шорсткість поверхні, що дозволило знизити якість з’єднання. Кожен шар YBCO структури HUG було перевірено на тісні поточні щільності до рівня asgrown YBCO плівки. Опір тришарових по 400-нм плівка товщиною STO виміряна більше 1 мΩ в діапазоні від 4.2 К до 300 К на площі 100*100 μm, що є достатнім для автоматичних операцій. Високотемпературні процеси використані у формуванні площини грунту не впливають на якість з'єднання, такі як IcRn продукти та надлишковий струм. Структура температурних залежностей може бути встановлена шляхом полосковою моделлю. Ця модель дещо відрізняється від Кортер-Казимира форми, λ (t) = λ0/ [1- (T/Tc) 2] 1-2.

2.4 Елементарні RSFQ схеми

Кілька простих схем RSFQ виготовлені і випробувані на низьких частотах у порядку для перевірки основних операцій SFQ зберігання потоку і перевірки застосовності конкретного виготовлення.

Першим продемонстрував роботу схеми HTS SFQ Іванов (50), який продемонстрував роботу схеми, що складається з усічених скидань - набір (RF) фліп-флоп (FF) (без переходу в буфер скидання каналу) доповнюються за необхідних вхідних і вихідних ланцюгів, використовуючи граничні переходи в YBCO тонкої плівки. Використання LTS (свинцевого сплаву) в площині землі, має обмежену схему операції до 4,2 К.

Форрестер та ін. Повідомили про два простих етапи зрушення з магнітним READ поєднанні SQUID, як показано на рис.16a (51). Ця схема одноярусна YBCO з п'ятьма SEGB переходами. Рисунок показує, що 16b - зсув резистора завантажений і Shifted SFQ дані по команді на 65 К. Відзначимо, що існує помилка близько 130 х років, коли потік квантово зміщується у відсутності зсуву команди. Хоча ефективність зв'язку між читанням SQUID і першими даними SQUID були лише близько 4%, як зберігання та їх SFQ руху у відповідь на сигнали застосовуються в ланцюзі HTS.

RSFQ серія, яка включає два DC / SFQ перетворювачі, два JTLs, повна

RS-FF, і SFQ / DC перетворювача, було реалізовано в площині джозефсонівських переходах утворена FEBI. Низькочастотні тестування показали, що це DC схемою працює надійно на 30 К, на кілька градусів нижче ефективної критичної температури переходу. Тризмінному розряді SFQ що складається з регістра зсуву, DC / SFQ, одного зчитування SQUID, яке виступає в якості SFQ / DC конвертор, і три JTLs (Рис.17) Схема складається з 26 бікристалів Джозефсонівських контактів, що є найбільшим числом в будь-якій розвиненій схемі HTS до теперішнього часу, і належного функціонування всіх компонентів схеми була підтверджена низькою частотою тестування на 50 К. оперативної схеми.3% для годинника поточних і 5% для струму зміщення в регістр зсуву.

Рис.16 Схема для двох етапів зареєстрованих зрушень і (б) зміна реєстрація завантаження і Shifted SFQ даних по команді на 65 К. Зверніть увагу на помилку в 130 С.

Ці вузькі поля можливо обумовлені значним поширенням критичних струмів в джозефсонівських переходах. Після зміщення струми встановлені, то помилки спостерігалися протягом 2-х періодів виміру.

RS-FF з 16 переходів CAM виступив Херст і ін. і працював на 45 K (39). Його конструкція була аналогічна повідомив раніше Шохор ін. (52). CAM переходи мають переваги, які роблять їх особливо придатними для прийняття вертикальних петель SFQ з низькою індуктивністю та зменшенням паразитних індуктивностей. Кім та ін. перевірили діяльність RS-FF з чотирма бікристалами перехресть, 71 K (54). SFQ зберігається в RS-FF, було зачитано за допомогою магнітного зв'язку SQUID.

Рис.17 Еквівалентна схема трьох-бітного SFQ регістра зсуву.

2.4.1 Збалансований компаратор

Збалансований компаратор, в якому два джозефсонівських послідовних з'єднань, це не тільки один з важливих елементів ланцюгів RSFQ, один досліджує ймовірність перемикання джозефсонівських переходів. Отримані "параметри згладжування" перемикання "сірої зони" і BER з допомогою компаратора, відповідно, описаних у розділі 9.3.2.1 компаратор був частиною кільцевого генератора в тому числі 15 FEBI переходів (рис.18). SFQ може циркулювати в кільці осцилятора і його поширення частот можуть бути розраховані, за відношенням Джозефсона, в залежності від напруги на кільцевому генераторі. Були отримані максимальні частоти стабільної циркуляції 6 ГГц. Це відповідає затримці 17пс за перехід.

Зонненберг та інші випробовували збалансований компаратор в три-HTS-шаровій технології. Вісім переходів індуктивності перебували на похилій горизонтальній площині, щоб зменшити індуктивність значення (55). Правильного функціонування збалансованого компаратора отримали шляхом постійного вимірювання властивостей перемикання. Сіра зона перемикання вимірювалася в залежності від температури (4.2-30 K) і робочої частоти (2.5-80 ГГц). Для кожної температури, сіра ширина зони має мінімум при низьких швидкостях імпульс 10-15

, де Ic кожного переходу становить близько 100
. Ширина сірої зони збільшується зі збільшенням частоти пульсу і збільшився більш швидкими темпами на 30 K ніж на 4,2 К.

Рис.18. Еквівалентні схеми кільцевого генератора SFQ зі збалансованим компаратором.

2.4.2 Дільники напруги

Окремі елементи логічної схеми RSFQ можуть працювати на частотах для яких характерна частота Джозефсона. Обмеження 0, коли багато цих елементів пов'язані один з одним за допомогою JTL, і це призводить до необхідності використання джозефсонівських контактів з вищими IcRn продуктивностями (56). Високочастотні обмеження елементів RSFQ можуть бути експериментально знайдені за допомогою співвідношення Джозефсона між середньою напругою постійного струму на переході і коливання Джозефсона частотою

. T-FF проходить кожен другий вихор від входу до виходу, так що вихідна напруга Vout це одна половина Vin. Просте вимірювання Vin і Vout дозволяє перевірити функціонування T-FF на високих частотах. Коли частотна межа не перевищена, Vout і буде рівна Vin / 2.

Каплуненко та ін. Перші, хто провів випробування дільники напруги з використанням HTS матеріалів. Вони використовували одношарові YBCO і своєрідний дизайн. Малі індуктивності контуру SFQ, близько 10 рН утворюють вузькі щілини шириною 0,4

, які можна порівняти з глибиною проникнення
~0,15
зверхпровідної плівки YBCO. Дві щілини, розділені мостом 0,8
, забезпечують міцний зв'язок між двома петлями SFQ (58,59). Еквівалентна схема і макет Т-FF ланцюга, яка включала 11 бікристальних вузлів, показані на рис. 19a і 19b. Як показана рис. 19c, функціонування спостерігалося до 0,82
при 4,4 K, даючи
в межах точності експерименту, що відповідає частоті Джозефсона близько 400 ГГц.

Дільник напруги з допомогою дев'яти рамп краю переходів з шаруватої горизонтальній площині був виготовлений Хасімото і ін. На 12,5K, максимальна напруга, при якому

Vвих 0.4
. Це значення відповідає 200 ГГц. Сайто та ін. Сфабрикували дільник напруги, використовуючи 11 типу рампи краю переходів і експлуатується на частотах до 155 Ггц при 15 К і 19 ГГц при 27 K (27).

Рис. 19 (а) Еквівалентна схема, (б) план, і (с), виміряні введення Vin, а також продукції, Vout, напруги дільника напруги на основі субмікронних щілин індуктивності.

2.4.3 Аналого-цифрові перетворювачі флеш типу

Періодичний характер SQUID дозволяє будувати n-розрядний аналого-цифровий перетворювач флеш-типу (AD), перетворювач містить тільки n компараторів, а не 2n +1, що використовуються в напівпровідниках флеш-тип. Циркулюючим струмом в петлі SQUID є періодична функція потоку, що застосовується з періодичністю Ф0. Це формує основу для 1 біт перетворювача. Динамічний діапазон такого перетворювача обмежується тільки, скільки магнітного потоку може бути застосований до SQUID без придушення критичних струмів джозефсонівських в тому числі. Відповідно до пропозиції К0, обсяг магнітного потоку може бути значно збільшений, з допомогою порівняння на основі квазі-одного-з'єднання SQUID (QOS).