Смекни!
smekni.com

Визначення реологічних характеристик (стр. 5 из 5)

Таким чином отримали реологічне рівняння

. (52)

Результати розрахунку за формулою (51) наведені в табл. 11, а графічне зображення - прямою 1 на рис. 7.


Таблиця 11 – Результати розрахунку за формулою (51)

1.2 4.1 13 25
1.92 2.32 3.54 5.19

Визначимо середньоквадратичне відхилення

(1.8 – 1.92)2 + (2.5 – 2.32)2 + (3.5 –

-3.54)2 + (5.2 – 5.19)2 = 0.0485.

Апроксимуємо експериментальні дані степеневою залежністю (39). Результати розрахунку

і
наведені в табл. 12.

Таблиця 12 – Значення параметрів

і
-7.921 -7.387 -6.886 -6.602
5.255 5.3985 5.5441 5.716

Визначимо такі суми:

= 5.255 + 5.3985 + 5.5441 + 5.716 = 21.9136,

= -7.921 – 7.387 – 6.886 – 6.602 = -28.796,

= 7.9212 + 7.3872 + 6.8862 + 6.6022 = 208.313,

= -5.255 · 7.921 – 5.3985 · 7.387 – 5.5441 · 6.886 –

-5.716 · 6.602 = -157.417.

За формулами (46) знаходимо:

,

,

.

Використовуючи формулу (39), маємо

. (53)

Результати розрахунку за формулою (53) наведені в табл. 13, а графічне зображення - кривою 2 на рис. 7.

Таблиця 13 – Результати розрахунку за формулою (53)

1.2 4.1 13 25
1.72 2.6 3.83 4.77


Згідно з формулами (41) маємо:

,

.

Реологічне рівняння (40) має вигляд

. (54)

Визначимо середньоквадратичне відхилення

(1.8 – 1.72)2 + (2.5 – 2.6)2 + (3.5 – 3.83)2 +

+(5.2 – 4.77)2 = 0.31.

У даному випадку модель в’язкопластичної рідини краще апроксимує реологію гірської породи, ніж модель степеневої рідини.


СПИСОК ЛІТЕРАТУРИ

1. Шищенко Р.И., Есьман Б.И., Кондратенко П.И. Гидравлика промывочных жидкостей. – М.: Недра, 1976.- 294 с.

2. Леонов Е.Г., Исаев В.И. Гидроаэромеханика в бурении.- М.: Недра, 1987. – 300 с.

3. Астарита Дж., Марручи Дж. Основы гидромеханики неньютоновских жидкостей. - М.: Мир, 1978.