Смекни!
smekni.com

Визначення енергоефективності енергоспоживаючих систем (стр. 2 из 4)

За параметрами Q=24м/год, Н=92,2м підбираємо насосний агрегат

Wilo-Multivert MVI-3206 Version PN16, який може забезпечити максимальну подачу Q=42м/год, та напір Н=115м, з двигуном номінальною потужністю P=11 кВт [2].

Будуємо графік напірних характеристик мережі та насосу для визначення оптимальних зон роботи насосу в дану мережу, з якого робимо висновки щодо енергоефективності та підраховуємо втрати.

1.4 Розрахунок енергоефективності та розробка рекомендацій щодо її підвищення

1.4.1 Втрати потужності, пов’язані з використанням прийнятого насосу, при його регулюванні засувкою при напірному трубопроводі, кВт:

,

де

- різниця між напором, що розвивається насосом та потрібним напором, м;

Q – потрібна подача насосу, м3/с;

- густина води при 600С, кг/ м3 [3].

1.4.2 Втрати потужності, виражені в грошовому еквіваленті:

,

де Т – розрахунковий час роботи насосу, ,(Т= 3000 год);

С – вартість 1кВт електроенергії (С=0,70грн).

1.4.3 Визначення кількості енергії, що втрачається внаслідок роботи насосного агрегату на нерозрахунковому режимі (режимі з неоптимальним ККД) в грошовому еквіваленті проводиться за формулою:

,

де

- оптимальний ККД насосу;

- ККД, з яким працює насос в мережі.

Сумарні втрати:

.

1.4.4 Частота обертання валу насосу, що забезпечить потрібний напір, при застосуванні частотного способу регулювання:

.

.

1.4.5 Введемо та розрахуємо коефіцієнт втрат електроенергії:


- кількість електроенергії, у грошовому еквіваленті, яку спожив насосний агрегат за розрахунковий період.

.

Втрати електроенергії складають 6%. Порівняно невеликі, але все одно актуальне питання щодо підвищення енергоефективності насосної системи.

Можливим шляхом вирішення даної задачі можуть бути наступні дії:

· Поліпшення конструкції системи шляхом збільшення діаметрів трубопроводів з метою зниження їх гідравлічного опору;

· По можливості, максимально зменшити кількість місцевих опорів;

· Вдосконалення способів регулювання роботи насоса;

· При завищеній продуктивності насосної системи , необхідно змінити передавальне число ремінної, або іншої передачі;

· Зменшення кавітації.


1.5. ВИСНОВКИ

Проведено розрахунок трубопровідної мережі, на задані параметри.

По результатам розрахунку побудовано графічну характеристику мережі, у відповідності до якої був підібрано відцентровий насосний агрегат марки Wilo-Multivert MVI-3206 Version PN16, який забезпечить максимальну подачу Q=42м/год, та напір Н=115м, з двигуном номінальною потужністю P=11 кВт [2].

Насосний агрегат відповідає умовам розрахунків та оптимально працює у "робочій точці" системи.

Для даного насосного агрегату розраховано його енергоефективність. Виявилось, що при регулюванні напору насосу засувкою сумарні втрати складають 1419 грн. за розрахунковий період експлуатації насосного агрегату. Вартість частотного регулятору набагато більша,а тому, спосіб регулювання напору засувкою є доцільнішим.


2 РОЗРАХУНОК ТА ВИЗНАЧЕННЯ ЕНЕРГОЕФЕКТИВНОСТІ СИСТЕМИ ВЕНТИЛЯЦІЇ

2.1 Завдання та вихідні дані

Необхідно виконати розрахунок повітропроводів, підібрати вентилятор і електродвигун для промислової вентиляційної системи, схема якої приведена на Рис. 2.

Рис.2 - Схема мережі повітропроводу.

Таблиця 1 - Вихідні дані

Величина Одиниці вимірювання Значення
Температура повітря, що перекачується °С 15
Відносна вологість повітря % 60
Значення кута α: α 1 трійника В α 2 трійника С α 3 трійника D град 45 60 35
Коліно Е (значенне кута β1) 120
Відвід F (значенне кута β2) 120
Відношення R/d 7
Стан поверхні труб забруднені металеві

2.2 Розрахунок системи вентиляції

Витрата повітря Qi и Li довжини вказаних на схемі ділянок повітропроводів приймаються:

Li=(1+i)·L0 (м),

де

= 0,05·(1+0,3n); L0=10·(1+0,2n).

Тут n = 28, i=1…4 – номери ділянок даної схеми. Підставив значення в рівняння (1), отримаємо:

Q0 = 0,05·(1+0,3·28)=0,47 м3/с; L0 =10·(1+0,2·28)=66 м.

Q1 = 1·0,47=0,47 м3/с L1 = (1+1)·66 = 132 м;

Q2 = 2·0,47=0,94 м3/с L2 = (1+2)·66 = 198 м;

Q3 = 3·0,47=1,41 м3/с L3 = (1+3)·66 = 264 м;

Q4 = 4·0,47=1,88 м3/с L4 = (1+4)·66 = 330 м.

Повітропроводами по всій мережі вважаємо круглі стальні труби, місцеві опори – трійники вузлів В, С і D, а також коліна Е и F.

2. В якості магістралі вибираємо найбільш протяжну ділянку мережі, інші ділянки вважаємо відгалуженнями. Для приведеної на рис.2 схеми магістраллю можна вважати ділянку ABCDEF, ділянки BK, CP, DS – відгалуженнями.

3. Розрахунок ведеться по нормальним умовам повітря при абсолютному тиску ра= 0,102 МПа (В0=760 мм рт. ст.), температурі t0 = 20 °С (T0 = 293 К) і відносній вологості φ0 = 50%.

При цих параметрах густина повітря ρ0 = 1,197 кг·м-3, питома вага γ0 = 11,77 Н·м-3 та газова стала R0 = 29,3 м·°С-1.

4. Загальна кількість необхідного повітря знаходиться за формулою:

Q =

,

де i – номери ділянок відгалужень повітровода.

Q = Q1 +Q2 +Q3 +Q4 = 0,47+0,94 +1,41+1,88 = 4,7 м3/с.

Розбиваємо схему мережі на ділянки з характерними витратами Qк.

Номери к присвоємо ділянкам в наступному порядку:

к=1 (участок АВ), к=2 (ВС), к=3 (СD), к=4 (DEFG), к=5 (ВК), к=6 (СР), к=7 (DS).

5. Виходячи з величин витрати Qк повітря по ділянкам і значень υк допустимих швидкостей руху газу в трубах, діаметри dк повітроводів:

,

де к = 1…7 для даної схеми.

Величини допустимих швидкостей руху газу в трубах треба приймати виходячи з призначення й умов експлуатації вентиляційної установки. Зазвичай ці значення лежать в υк = 5 – 25 м·с-1 .

В даному розрахунку для ділянок магістралі (к = 1…4) можна вважати

υк = 12 м·с-1, а для відгалужень (к = 5…7) υк = 6 м·с-1.

Розрахункові значення діаметрів повітроводів округляємо до найближчих стандартних Таблиця Б.3.

d2 =

d3 =

d4 =

d5 =

d6 =