Смекни!
smekni.com

Виды теплообмена (стр. 2 из 7)

Если кондуктивный перенос тепла осуществляется через составную (многослойную) плоскую стенку, распределение температуры и тепловой поток можно найти, предполагая, что тепло течет по эквивалентной тепловой цепи, представляющей сумму термических сопротивлений, соответствующих отдельным слоям из различных материалов.

В качестве примера тепловой цепи рассмотрим плоскую стенку (индекс 1), покрытую двумя слоями различных изоляционных материалов (индексы 2 и 3). Геометрия задачи показана на рисунке 1.2. Один и тот же тепловой поток проходит последовательно через каждое термическое сопротивление, и, следовательно, тепловая цепь состоит из последовательно соединенных термических сопротивлений. Если известны свойства всех трех материалов, заданы геометрические характеристики и температуры на двух внешних поверхностях, тепловой поток можно найти с помощью соотношения, аналогичного закону Ома:

(1.5)

Поскольку тепловой поток через многослойную стенку известен, можно найти температуры на поверхностях раздела материалов, применяя закон Ома для каждого слоя. Например, температуру Тx на поверхности раздела материалов 1 и 2 можно рассчитать по формуле

(1.6)

Часто в многослойных стенках слои материалов расположены так, что тепловой поток через них течет скорее параллельно, чем последовательно. В таком случае в тепловую цепь включаются участки из параллельно соединенных термических сопротивлений.

Тепловой поток определяется по формуле

(1.7)

Отдельные термические сопротивления выражаются соотношением


.

Промежуточные температуры типа ТX можно найти из уравнения (1.6).

Предполагается, что при параллельном соединении термических сопротивлений R2 и R3 тепловой поток остается одномерным; если же сопротивления R2 и R3 заметно отличаются друг от друга, могут стать существенными двумерные эффекты.

1.3 Цилиндрические координаты

Из задач теплопроводности для тел цилиндрической формы чаще всего встречается задача о кондуктивном тепловом потоке через длинный полый цилиндр (рисунок 1.3). Известно, что температура внутренней поверхности цилиндра равна Ti, а температура наружной поверхности То. Стационарное распределение температуры в твердом теле с постоянными теплофизическими свойствами при отсутствии внутреннего тепловыделения определяется решением уравнения теплопроводности при двух граничных условиях: Т(ri)=Ti; Т(r0)=Т0. Решение для местной температуры Т(r) имеет вид

(1.8)

Выражение (1.8) записывается в безразмерной форме следующим образом:

. (1.9)

Следовательно, температура изменяется в радиальном направлении по логарифмическому закону.

Поскольку распределение температуры известно, тепловой поток вдоль радиуса цилиндра можно найти с помощью закона Фурье для цилиндрической системы координат,

(1.10)

где

— длина цилиндра.

Дифференцируя распределение температуры (1.8) и подставляя полученный результат в соотношение (1.10), получаем

(1.11)

Выражение (1.11) записано в форме закона Ома, и знаменатель представляет собой термическое сопротивление полого цилиндра:

(1.12)

Используем интегральную форму представленного термического сопротивления. Получаем


Принципы последовательного и параллельного соединения термических сопротивлений в цепь, справедливые для плоской стенки в прямоугольной системе координат, можно применить и для задачи о теплопроводности в полом цилиндре. Предположим, например, что жидкость течет в трубе, покрытой теплоизоляционным материалом (рисунок 1.4). Известно, что средняя температура жидкости равна T1, а температура внешней поверхности изоляции Т2. Характеристики материала трубы обозначены индексом 1, а изоляции—индексом 2. Конвективное термическое сопротивление жидкости определяется формулой (1.01). Конвективное термическое сопротивление жидкости нужно соединить последовательно с двумя кондуктивными термическими сопротивлениями для двух твердых материалов, поскольку тепловой поток распространяется последовательно через каждый из этих материалов.

Тепловой поток в этой задаче выражается соотношением:

(1.13)

Термическое сопротивление, входящее в соотношение (1.13), является суммой всех термических сопротивлений между двумя известными температурами. Если известны температуры Т1и Т2, то полное сопротивление должно равняться сумме только кондуктивных сопротивлений трубы и изоляции. Температура Тx при известном тепловом потоке находится из соотношения

(1.14)

1.4 Сферические координаты

Распределение температуры и тепловой поток для полого шара определяются таким же образом, как для полого цилиндра и плоской стенки. Стационарное одномерное распределение температуры при отсутствии внутреннего тепловыделения определяется из решения упрощенного уравнения теплопроводности, записанного в сферических координатах. Это уравнение имеет вид

Предполагаем, что граничными условиями являются заданные температуры внутренней и наружной поверхности шара (рисунок 1.5.): Т(ri)=Ti; Т(r0)=Т0. В таком случае распределение температуры в полом шаре определяется соотношением

(1.15)

Следовательно, температура полого шара изменяется в радиальном направлении по гиперболическому закону.

Тепловой поток через стенку шара можно найти, применяя закон Фурье к соотношению (1.15). В итоге получаем

(1.16)

Таким образом, термическое сопротивление стенки шара выражается формулой

(1.17)

Для интегрального представления

имеем

Использование интегрального представления

более универсально, не требует математического описания, интегрирования дифференциального уравнения, определения констант и т. д.

1.5 Суммарный коэффициент теплопередачи

Если в задаче теплообмена участвует несколько термических сопротивлений, соединенных последовательно, параллельно или комбинированно, удобно ввести суммарный коэффициент теплопередачи, или суммарную удельную тепловую проводимость. Суммарный коэффициент теплопередачи обозначается через К и определяется формулой

(1.18)

Величина K играет ту же роль, что и коэффициент конвективной теплоотдачи a. И К, и a имеют размерность Вт/(м2.град). Если соотношение (1.18) сравнить с равенством

, (1.19)

то видно, что К можно выразить через полное термическое сопротивление цепи:

(1.20)

В качестве примера использования суммарного коэффициента теплопередачи рассмотрим трехслойную, плоскую стенку, показанную на рисунке 1.2. Величина К в этой задаче находится по формуле

В этом примере площади поперечного сечения всех трех материалов одинаковы, поэтому нет сомнений, какую площадь нужно использовать в соотношении (1.20). Однако, если площади для каждого термического сопротивления различны, нужно быть последовательными при выборе площади, входящей в соотношение (1.20). Случаю переменной площади соответствует задача о многослойной цилиндрической стенке с последовательным соединением термических сопротивлений. Величину KS для тепловой цепи (рисунок 1.4) можно определить из формулы


или

Отметим, что произведение KS постоянно, но величина K зависит от выбора соответствующей площади. Предположим, например, что за характерную площадь мы приняли площадь внутренней поверхности трубы Si =2p r1L. В таком случае величина K, рассчитанная по Si, равна