Смекни!
smekni.com

Взаимодействия двух радикально пульсирующих пузырьков газа в жидкости (стр. 1 из 8)

МИНЕСТЕРСТВО ОБЩЕГО И ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

РОССИЙСКОЙ ФЕДЕРАЦИИ

ТАТАРСКИЙ ГОСУДАРСТВЕННЫЙ ГУМАНИТАРНО-ПЕДАГОГИЧЕСКИЙ УНИВЕРСИТЕТ

Математический факультет

Кафедра вычислительной математики, информатики и методики ее преподавания

КУРСОВАЯ РАБОТА

взаимодействия двух радиально пульсирующих пузырьков газа в жидкости

Выполнил студент 146 группы: Вафин А.А.

Научный руководитель: д. ф. – м. н. Аганин А. А.

Казань – 2007

Содержание

Введение

1. Постановка задачи в рамках уравнений динамики жидкости

2. Математическая модель взаимодействия пузырьков

3. Методика решения

4. Исследование взаимодействия двух радиально пульсирующих пузырьков газа в жидкости

5. Заключение

6. Литература

7. Приложение. (Программа расчета).

Введение

К настоящему времени довольно хорошо изучена динамика отдельного пузырька газа в жидкости. Полученные в этом отношении результаты имеют важное теоретическое и прикладное значение. Вместе с тем, в реальных жидкостях, как правило, присутствует не один, а множество пузырьков, так что свойства жидкостей существенно зависят от особенностей взаимодействия между пузырьками. В силу большей сложности этот вопрос является менее изученным, хотя он и имеет важное прикладное значение.

В данной курсовой работе исследуется взаимодействия двух радиально пульсирующих пузырьков газа в жидкости ранние выведенной математической модели. В принципе, такое взаимодействие можно изучать и на основе широко известных уравнений Навье-Стокса методом прямого численного моделирования. Однако такой подход пока не используется в силу больших потребностей компьютерного времени даже на современных компьютерах с высоким быстродействием. В модели, использующейся в курсовой работе, жидкость считается невязкой несжимаемой, пузырьки – осесимметричными. Пузырьки расположены сносно. Их общая ось симметрии направлена вертикально вдоль действия силы тяжести. Пузырьки совершают нелинейные радиальные колебания, а скорости их вертикального пространственного перемещения считаются малыми. Используются три системы отсчета, одна неподвижная и две подвижные. В качестве неподвижной системы приняты декартовые координаты, а в качестве подвижных систем – сферические координаты. Начало отсчета радиальных координат в подвижных сферических системах отсчета связано с центрами пузырьков. Поверхности каждого из пузырьков представляются в виде ряда по поверхностным сферическим гармоникам нулевой, второй, третьей, четвертой и т.д. степеней. При этом сферическая гармоника нулевой степени описывает радиальную составляющую поверхности пузырька, а гармоники второй, третьей и т.д. степеней – отклонения от сферической формы в виде соответствующей гармоники (второй степени – эллипсоидальные отклонения, третьей – грушеобразные и т.д.).

Созданная математическая модель представляет собой систему обыкновенных дифференциальных уравнений второго порядка относительно радиусов пузырьков, пространственного положения их центров и амплитуды отклонений от сферической формы пузырьков в виде сферических поверхностных гармоник. При выводе этих уравнений используются частные решения уравнения Лапласа в сферической системе координат и интеграл Коши-Лагранжа.

Постановка задачи в рамках уравнений динамики жидкости

Рассматривается динамика двух газовых пузырьков в неограниченном объеме невязкой несжимаемой жидкости. Динамика жидкости описывается уравнениями

,
. (1)

Здесь

– время эйлеровых (неподвижных) систем координат
,
,
(нижний индекс
означает частную производную),
– вектор скорости,
– плотность жидкости,
– давление,
,
,
,
–направляющие векторы пространственных координат. Здесь и далее, если не оговорено противное, по повторяющимся индексам предполагается суммирование (здесь от 1 до 3).

Пузырьки расположены вдоль вертикальной оси
неподвижной декартовой системы координат
(рис.1).

На поверхности каждого пузырька выполняются следующие условия:

кинематическое

, (2)

и динамическое

. (3)

Здесь

– скорость точки поверхности пузырька,
– нормаль к поверхности пузырька, верхние знаки указывают на отношение к внешней (+) и внутренней (–) сторонам поверхности.

Газ в пузырьках принимается гомобарическим (с однородным распределением давления) с давлением, изменяющимся по закону (Ван-дер-Ваальса)

, (4)

где

– начальное давление газа в пузырьке,
– текущий и начальный объемы пузырька,
– постоянная,
– показатель адиабаты.

На бесконечном удалении от пузырьков давление жидкости

совершает гармонические колебания

, (5)

где

– статическое давление в жидкости,
,
– амплитуда и частота колебаний.

Рассматриваются случай, когда форма пузырьков в интересующем промежутке времени остается относительно близкой к сферической.

Математическая модель взаимодействия пузырьков

В пятом приближении относительно

уравнения динамики двух газовых пузырьков в вязкой сжимаемой жидкости представляют собой систему, состоящую из четырех дифференциальных уравнений относительно радиусов пузырьков
, координат их центров

;

;

;

;