На наблюдении ионизации основан один из самых распространенных методов определения энергии медленных заряженных частиц. Определяется число пар ионов, создаваемых частицей на полном ее пути в веществе, и если известна средняя энергия
1 МэВ в воздухе
Простой вид зависимости
Действительно, согласно (17) потери энергии на ионизацию
не зависят от массы частицы, но обратно пропорциональны квадрату ее скорости. Поэтому при равных энергиях они и будут пропорциональны значениям масс.
В релятивистском случае потери энергии, как уже говорилось, пропорциональны логарифму квадрата скорости, и поэтому при одинаковых энергиях различие по массам в 2000 раз меняет ионизационную способность лишь в два раза.
Подобный пересчет может быть сделан и для падающих частиц с другим зарядом.
Пробег заряженных частиц в веществе.
Под пробегом частицы Rв каком-нибудь веществе понимается толщина слоя этого вещества, которую может пройти частица с энергией
По существу эта величина более или менее определенна лишь для тяжелых частиц, путь которых практически является прямой линией; и по этой причине разброс в величине пробега для частиц одинаковой энергии невелик. У легких частиц, например у электронов малых энергий, вероятность рассеяния велика и поэтому понятие пути и понятие пробега для них не совпадают. По измеренному пробегу частицы в среде можно определять ее энергию, или, зная зависимость величины пробега от энергии, определять массу частицы.
Для данной среды и для частицы с зарядом Zeвеличина
Зная вид функции
Для нерелятивистских энергий
Подставив (23) и (24) в (22) и произведя интегрирование, получим
Из этого соотношения следует, что:
1) при равных скоростях пробеги заряженных частиц в веществе пропорциональны массам этих частиц и обратно пропорциональны квадратам зарядов:
2) при равных энергиях частиц их пробеги обратно пропорциональны массам:
Пробеги заряженных частиц часто выражают в г/см2.
и пользуются выражением удельных потерь в форме:
Измерять пробеги в г/см2удобно, потому что удельные ионизационные потери в легких веществах, рассчитанные на г/см2, одинаковы в разных средах. Действительно, мы видели, что
Однако число электронов, содержащихся в 1 см3вещества, равно
где N0 — число Авогадро, А — атомный вес вещества.
Так как у легких элементов
а это означает, что
Для однозарядных релятивистских частиц
и слабо убывает с ростом Zвещества.
На основании формулы для пробега частиц (25), примененной к однородному пучку, который проходит слой поглотителя без рассеяния, можно построить зависимость числа частиц, прошедших через поглотитель, от толщины слоя. Эта кривая изображена на рис. 54. Для монохроматического пучка
Рис. 16. Зависимость числа моноэнергетических частиц, прошедших поглотитель, от его толщины: а — а-частиц; б — электронов
Конечный участок экспериментальной кривой не вертикален, а имеет небольшой наклон вследствие статистического характера процесса потери энергии. Частицы теряют свою энергию в очень большом, но конечном числе отдельных актов. Флуктуации подвержено как число таких актов на единицу длины, так и потери энергии в каждом отдельном акте. В соответствии с этим и пробеги
Поэтому по пробегу
Ядерное взаимодействие
Потери энергии за счет ядерного взаимодействия: рассеяния на ядерных силах, ядерных реакций — имеют большое значение только для сильновзаимодействующих (ядерноактивных) частиц, например
Поскольку ядерные силы короткодействующие, частица должна приблизиться к ядру на расстояние порядка радиуса ядра R~1012см. Характерный же параметр удара для ионизационных потерь
Однако при каждой ядерной реакции частица теряет значительную часть своей энергии, в то аремя как при столкновении с атомной оболочкой она теряет всего