Импульс же, полученный в продольном направлении
, как легко видеть, равен нулю, так как продольная компонента силы на пути до точки наибольшего сближения и после нее имеет противоположные знаки.Если считать, что взаимодействие существенно только на некотором отрезке пути 2b,то время пролета определится как
.Кулоновская сила на этом участке по порядку величины ,поэтому импульс, полученный электроном, может быть записан как (15)а переданная электрону энергия
(16)Эту энергию в среднем и теряет заряженная частица.
Чтобы учесть все электроны с данным параметром удара, рассмотрим кольцевой цилиндр, ось которого совпадает с траекторией частицы, а боковая поверхность проходит через точку, где находится электрон (рис. 14).
Если число электронов в 1
вещества равно , то между стенками цилиндров радиусов b и b+db, т. е. в объеме 2πbdb(единичной длины), будет находиться 2πbdbэлектронов. В результате взаимодействия с ними заряженная частица на длине потеряет энергию (17)Для получения полных ионизационных потерь нужно проинтегрировать (16) по всем возможным значениям параметра удара от минимального до максимального,что дает
(18)Пределы
и выбирают из физических соображений по-разному в релятивистском и нерелятивистском случаях. Так как они входят под знак логарифма, то особая точность в их определении не требуется. При классическом рассмотрении значение определяется исходя из максимальной энергии, которая может быть передана электрону в атоме. Такая максимальная энергия передается при лобовом столкновении и равна . Подставив это значение в (16), получим Учет квантовомеханических эффектов приводит к несколько иному выражению
Предел
определяется из энергии связи электрона в атоме, ибо при передаче энергии, меньшей характерной энергии возбуждения атома, возбуждение его вообще не произойдет.В релятивистском случае нужно учесть, что поле падающей частицы сжимается в направлении движения, а величина Енувеличивается в
раз, где = . Это приводит к тому, что энергия будет передаваться также и более удаленным электронам где
— средний ионизационный потенциал атомов поглощающего вещества.Точный подсчет дает окончательно для ионизационных потерь энергии тяжелой частицей
(19)Если через вещество проходит не тяжелая частица, а электрон (Z=l), то формула (19) немного изменится, так как сам электрон будет отклоняться в процессе взаимодействия от своего первоначального направления и, кроме того, возникнут так называемые обменные эффекты, имеющие квантовую природу.
В этом случае выражение для удельных потерь будет
(20)где
— кинетическая энергия электрона.Графически зависимость удельных ионизационных потерь от
энергии тяжелых частиц имеет вид, показанный на рис. 15. Рассмотрим физический смысл отдельных членов выражения (19) и поясним ход кривой. Начальный участок АВ. В этом случае выведенной формулой пользоваться нельзя, так как при малых энергиях импульс налетающей частицы сравним с импульсом орбитального движения электронов. Поэтому траекторию налетающей частицы в процессе взаимодействия нельзя считать прямолинейной, и, кроме того, эта частица не может передать необходимую для возбуждения атома энергию.
Участок ВС. Здесь в основном действует закон
. По мере увеличения скорости частицы сама сила Fн не меняется, но меняется время, взаимодействия, а следовательно, меняется и импульс силы, и передаваемая энергия.По мере приближения
к скорости света уменьшение становится все более медленным, и при скоростях величина принимает минимальное значение; далее наблюдается логарифмический рост потерь.Участок CD. Слабый подъем обусловлен эффектом лоренцевского сжатия поля, из-за которого энергия передается все более и более далеким электронам (Енувеличивается в
раз).Участок DE. При дальнейшем увеличении энергии, когда параметр
больше расстояний между атомами, рост потерь ограничивается из-за того, что действующая, на далекий электрон сила уменьшена возникающей под действием поля частицы поляризацией среды. Эта сила в е раз меньше, чем в пустоте ( ). На этом участке формула (19) уже несправедлива. С другой стороны, при далеких соударениях возникает новое физическое явление — так называемое излучение Вавилова—Черепкова, приводящее к дополнительным потерям энергии.Из формулы (19) можно сделать основной вывод, что удельные потери энергии на ионизацию атомов:
пропорциональны квадрату заряда движущейся частицы (Ze)2,
пропорциональны концентрации электронов в среде
,
являются функцией скорости f(v) и )не зависят от массы налетающей частицы М, т. е.
(21)Так как величина удельных ионизационных потерь зависит от скорости и заряда частицы, то при одной и той же энергии удельные ионизационные потери для электрона будут во много раз меньше, чем для протона или
-частицы. Например, при энергиях порядка нескольких МэВ ионизационные потери электрона примерно в 10 000 раз меньше, чем у -частиц. Именно поэтому у -частиц и электронов такая различная проникающая способность: -частица в воздухе проходит всего лишь несколько сантиметров, прежде чем замедлится до тепловых скоростей, тогда как путь электрона такой же энергии измеряется десятками метров.