Смекни!
smekni.com

Взаимодействие бета-частиц с веществом (стр. 5 из 8)

где F – электростатическая сила и

- ее составляющая нормальная к линии полета, а t – время полета

Импульс же, полученный в продольном направлении

, как легко видеть, равен нулю, так как продольная компонента силы на пути до точки наибольшего сближения и после нее имеет противоположные знаки.

Если считать, что взаимодействие существенно только на не­котором отрезке пути 2b,то время пролета определится как

.Кулоновская сила на этом участке по порядку величины
,поэтому импульс, полученный электроном, может быть записан как

(15)

а переданная электрону энергия

(16)

Эту энергию в среднем и теряет заряженная частица.

Чтобы учесть все электроны с данным параметром удара, рассмотрим кольцевой цилиндр, ось которого совпадает с траекто­рией частицы, а боковая поверхность проходит через точку, где находится электрон (рис. 14).

Если число электронов в 1

вещества равно

, то между стенками цилиндров радиусов b и b+db, т. е. в объеме 2πbdb(единичной длины), будет находиться 2πbdbэлектронов. В результате взаимодействия с ними заряженная частица на длине
потеряет энергию

(17)

Для получения полных ионизационных потерь нужно проин­тегрировать (16) по всем возможным значениям параметра удара от минимального до максимального,что дает

(18)

Пределы

и
выбирают из физических соображений по-разному в релятивистском и нерелятивистском случаях. Так как они входят под знак логарифма, то особая точность в их определении не требуется. При классическом рассмотрении значение
опре­деляется исходя из максимальной энергии, которая может быть передана электрону в атоме. Такая максимальная энергия пере­дается при лобовом столкновении и равна
. Подста­вив это значение в (16), получим

Учет квантовомеханических эффектов приводит к несколько иному выражению

Предел

определяется из энергии связи электрона в ато­ме, ибо при передаче энергии, меньшей характерной энергии воз­буждения атома, возбуждение его вообще не произойдет.

В релятивистском случае нужно учесть, что поле падающей частицы сжимается в направлении движения, а величина Енувели­чивается в

раз, где
=
.
Это приводит к тому, что энергия будет передаваться также и более удаленным электронам

где

— средний ионизационный потенциал атомов поглощающего вещества.

Точный подсчет дает окончательно для ионизационных потерь энергии тяжелой частицей

(19)

Если через вещество проходит не тяжелая частица, а электрон (Z=l), то формула (19) немного изменится, так как сам электрон будет отклоняться в процессе взаимодействия от своего первона­чального направления и, кроме того, возникнут так называемые обменные эффекты, имеющие квантовую природу.

В этом случае выражение для удельных потерь будет

(20)

где

— кинетическая энергия электрона.

Графически зависимость удельных ионизационных потерь от

энергии тяжелых частиц имеет вид, показанный на рис. 15. Рас­смотрим физический смысл от­дельных членов выражения (19) и поясним ход кривой.
Рис. 15. Зависимость иониза­ционных потерь от энергии для тяжелых частиц

Начальный участок АВ. В этом случае выведенной фор­мулой пользоваться нельзя, так как при малых энергиях импульс налетающей частицы сравним с импульсом орбитального движе­ния электронов. Поэтому траек­торию налетающей частицы в процессе взаимодействия нельзя считать прямолинейной, и, кроме того, эта частица не может передать необходимую для возбуждения атома энергию.

Участок ВС. Здесь в основном действует закон

. По мере увеличения скорости частицы сама сила Fн не меняется, но меняет­ся время, взаимодействия, а следовательно, меняется и импульс силы, и передаваемая энергия.

По мере приближения

к скорости света уменьшение
становится все более медленным, и при скоростях
величина
принимает минимальное значение; далее наблюдается логарифмический рост потерь.

Участок CD. Слабый подъем обусловлен эффектом лоренцевского сжатия поля, из-за которого энергия передается все более и более далеким электронам нувеличивается в

раз).

Участок DE. При дальнейшем увеличении энергии, когда па­раметр

больше расстояний между атомами, рост потерь ограничивается из-за того, что действующая, на далекий электрон сила уменьшена возникающей под действием поля частицы поля­ризацией среды. Эта сила в е раз меньше, чем в пустоте (
). На этом участке формула (19) уже несправедлива. С другой стороны, при далеких соударе­ниях возникает новое физическое явление — так называемое излу­чение Вавилова—Черепкова, приводящее к дополнительным поте­рям энергии.

Из формулы (19) можно сделать основной вывод, что удель­ные потери энергии на ионизацию атомов:

пропорциональны квадрату заряда движущейся частицы (Ze)2,
пропорциональны концентрации электронов в среде

,
являются функцией скорости f(v) и )

не зависят от массы налетающей частицы М, т. е.

(21)

Так как величина удельных ионизационных потерь зависит от скорости и заряда частицы, то при одной и той же энергии удель­ные ионизационные потери для электрона будут во много раз меньше, чем для протона или

-частицы. Например, при энергиях порядка нескольких МэВ ионизационные потери электрона пример­но в 10 000 раз меньше, чем у
-частиц. Именно поэтому у
-частиц и электронов такая различная проникающая способность:
-частица в воздухе проходит всего лишь несколько сантиметров, прежде чем замедлится до тепловых скоростей, тогда как путь электрона такой же энергии измеряется десятками метров.