Смекни!
smekni.com

Біологічна дія іонізуючого випромінювання (стр. 2 из 3)

Основними правилами, які визначають характер захисту від γ - випромінювання на забрудненій території є:

· Потужність дози γ - випромінювання найбільш висока на початку після випадання радіоактивних опадів, тому захист від γ - випромінювання необхідно здійснювати буквально з першої години, навіть з перших хвилин випадання радіоактивних опадів. Початок випадання виявляється різким підвищенням рівня радіації;

· Перебування в будь-якому будинку або споруді знижує дозу γ – опромінення на величину коефіцієнта ослаблення γ – випромінювання будинком або спорудою;

· Внаслідок того, що потужність дози γ - випромінювання знижується швидше на початку забруднення, укриття людини в спорудах з відомим коефіцієнтом ослаблення має бути по можливості тривалим. У першу добу після випадання радіоактивних опадів укриття рятує людину від дії випромінювання в значно більшій мірі, ніж у другу і тим більше в наступну добу.

На підставі цих правил можна зробити важливий висновок:

для надійного захисту людини від зовнішнього γ - випромінювання на забрудненій території доцільно знати, що найвища загроза опромінення існує лише в перші години після забруднення території. Ці перші години слід перебувати в приміщеннях з найвищим коефіцієнтомзахисту.

3.7.4 Розрахунок захисту і захисні матеріали

Робота з радіоактивними речовинами повинна виконуватися в окремих спеціально обладнаних приміщеннях. Для роботи з газоподібними речовинами використовуються бокси (шафи) із вмонтованими в них гумовими рукавичками або механічними маніпуляторами. Такі бокси повинні мати закриту систему вентиляції. Роботи з відкритими джерелами (наприклад, радіоактивними пробами ґрунту і т.п.) також проводять у боксах, або використовують індивідуальні захисні засоби, такі як протигази, гумові рукавички і т.п.

Джерела великої активності, рівні дози яких перевищують допустиму межу дози, закривають захисними екранами. Вибір матеріалу і товщини захисного екрана залежить від виду випромінювання, його енергії й активності джерела.

Найбільш розповсюдженим методом розрахунку захисту від зовнішнього опромінення є розрахунок необхідної кратності ослаблення.

Необхідна кратність ослаблення Кнеобх визначається відношенням дози випромінювання у відповідній точці до ліміту дози (ЛД) і показує у скільки разів необхідно понизити рівень радіації за допомогою захисних засобів, щоб забезпечити безпечні умови праці:

Кнеобх =

, (3.7.4.1)

де Х - експозиційна доза, Р; ЛД - ліміт дози (задається НРБУ - 97), мЗв; f = 9.3 мЗв/Р – нормувальний коефіцієнт.

Знаючи необхідну кратність ослаблення, можна розрахувати необхідний захист. Зупинимося в першу чергу на розрахунку захисту від γ-випромінювання, тому що закриті γ - джерела знайшли широке застосування в науці і техніці. Ослаблення інтенсивності γ-випромінювання (вузького пучка) у речовині відбувається за експонентним законом Бугера

Id = I0

, (3.7.4.2)

де I0 - інтенсивність γ-випромінювання, виміряна приладом при відсутності захисного екрана; Id - інтенсивність γ - випромінювання при наявності захисного екрана товщиною d см.,

- лінійний коефіцієнт ослаблення γ - променів, см-1, що характеризує відносну зміну інтенсивності випромінювання на одиницю товщини захисного екрана.
Логарифмуючи вираз (3.7.4.2), одержуємо формулу для визначення лінійного коефіцієнта ослаблення.

. (3.7.4.3)

Відношення K = I0/Id називають кратністю ослаблення, що у даному випадку показує у скількох разів послабляється інтенсивність потоку γ - випромінювання захисним матеріалом товщиною d.
Звичайно в довідниках приводять значення масових коефіцієнтів ослаблення різних речовин. Лінійний коефіцієнт ослаблення μ пов'язаний з масовим коефіцієнтом ослаблення

співвідношенням.

, (3.7.4.4)

Врахувавши всі ці зауваження легко розрахувати товщину захисту для вибраного матеріалу

(м). (3.7.4.5)

Користаючись виразом (3.7.4.5), можна визначити товщину матеріалу, що забезпечує ослаблення інтенсивності вдвічі - шар половинного ослаблення:

(м), (3.7.4.6)

і в десять разів – товщина шару десятикратного ослаблення

(м). (3.7.4.7)

Якщо виходити з довжини максимального пробігу заряджених частинок в тому або іншому матеріалі, то товщина шару поглинання може виявитись дещо більшою за розраховану. Так шар матеріалу товщиною 0,2 мм повністю затримує

- випромінювання.

Пробіг a - частинок у будь-якій речовині розраховується за такою емпіричною формулою

(см) (3.7.4.8)

де Ареч.- атомна маса речовини;

- густина речовини, г/см3; Е - енергія альфа - випромінювання в МеВ.

Для захисту від a - випромінювання достатній шар повітря в кілька сантиметрів або екран з плексигласу чи скла товщиною в кілька міліметрів.

Пробіг a - частинок у повітрі розраховується за емпіричною формулою:

(см), (3.7.4.9)

де К1 - коефіцієнт, що залежить від температури і тиску; К2 - коефіцієнт, рівний 9,67.10-28; Е - енергія a - частинок, МеВ; V - швидкість a - частинок, см/с.

Для поглинання

- випромінювання необхідний шар води або пластмаси товщиною не менше 15 мм. Якщо ж в якості поглинаючої речовини використовується речовина з вищим атомним номером, то товщина шару поглинання зменшується.

Для роботи з β - випромінюванням необхідно передбачити захист безпосередньо від β - частинок і захист від гальмового випромінювання, яке виникає при гальмуванні β - частинок у захисному екрані. Гальмівне випромінювання є квантами енергії, аналогічними до γ- квантів.

Захист від β - частинок здійснюється з допомогою комбінованих екранів. У такому екрані з боку джерела розташовують шар матеріалу з малою атомною масою (плексиглас, карболіт і ін.); це дає можливість знизити енергію квантів гальмівного випромінювання. Товщина цього шару повинна відповідати довжині максимального пробігу β - частинок у даному матеріалі. За ним розміщується шар матеріалу з великою атомною масою, що забезпечує ослаблення наведеного гальмівного випромінювання.

Дані про максимальний пробіг β - частинок різної енергії в повітрі, воді (або біологічній тканині) і алюмінії наведені в табл. 5.

Таблиця 5.

Максимальний пробіг β - частинок різної енергії в речовині

Максимальний пробіг β - частинок з максимальною енергією в межах від 0.5 до 20 МеВ розраховують за емпіричною формулою:

, (3.7.4.9)

де Еmax - максимальна енергія β - частинок, МеВ;

- густина речовини, г/см3.
В першому наближенні можна вважати, що в повітрі максимальний пробіг β - частинок L = 0,41Емакс [см], у воді (або біологічній тканині) - L = 5Емакс [мм], в алюмінії - L = 2Емакс [мм].

Ослаблення потоку β - частинок на більшій частині пробігу в речовині має експонентний характер

Id = I0

, (3.7.4.10)

де I0 - потік β - частинок при відсутності захисного екрана, частинок/с;

Id - потік β - частинок при наявності захисного екрана товщиною d см;

μ - лінійний коефіцієнт ослаблення β - випромінювання в речовині захисного екрана, см-1.

Нейтрони й γ- випромінювання не мають певної довжини вільного пробігу. Залежність між товщиною шару поглинання й інтенсивністю випромінювання тут має логарифмічний характер. При будь-якій товщині поглинання у цьому випадку досягається лише часткове зниження інтенсивності.

Для захисту від нейтронного випромінювання застосовують різні матеріали в залежності від його енергії. Нейтрони із енергією більшою за 0.5 МеВ добре поглинаються в результаті процесів непружного розсіювання залізом. Нейтрони з енергією меншою 0.5 МеВ ефективно поглинаються захисним екраном , що містить водень (вода, парафін), а також берилій або графіт. Найбільш ефективно поглинають теплові нейтрони - кадмій, бор і залізо. Процес захоплення теплових нейтронів супроводжується випущенням γ - випромінювання. Для комбінованого захисту від нейтронного і γ- випромінювання застосовують шарові екрани з важких і легких матеріалів.

На підставі розрахункових і експериментальних даних створені таблиці для визначення товщини захисту від γ - випромінювання з різних матеріалів.