Смекни!
smekni.com

Атомная энергия (стр. 7 из 8)

Гамма-спектрометрическое исследование проб нефтешлама и реагентов не выявило превышение гигиенических нормативов содержания ЕРН и ИРН. За 4 года исследования проб грунта обнаружено превышение требований СПОРО-85 в 1999 году в обваловке шламового амбара КСП-16 ОДАО "Белозернефть"
- по торию-232 (232Th) - в 1,7 раза,
- по эффективной активности (Аэфф.) - в 1,1 раза.

Уровень загрязнения поверхностей альфа- и бета-активными радионуклидами в основном не превышает гигиенических нормативов, кроме некоторых объектов.

В 1999 году было увеличено количество исследований альфа- и бета-загрязненности кожных покровов работающих. Результаты оказались ошеломляющими: из 9 обследованных предприятий только в 3 не было обнаружено превышение регламента ( ОДАО "Самотлорнефть", ОДАО "Нижневартовскнефть" и ЗАО Компания "Сибойл"). Во всех остальных содержание альфа-частиц в смывах с рук работающих превысило ведомственные нормативы Минтопэнерго в 1,4 - 9 раз, а требования НРБ-96 - от 1,1 до 4,5 раз. Окончательное заключение о причинах загрязнения кожных покровов пом.бурильщика, оператора, пом.оператора, слесаря дать нельзя из-за ограниченного количества исследований (12 проб) , но предварительный вывод можно сделать: работающие либо обеспечены рукавицами в недостаточном количестве , либо применяемые средства защиты недостаточны для защиты от загрязнения радионуклидами.

Параллельно с радиационным обследованием нефтепромыслов проводилась работа по изучению радиоэкологической обстановки на прилегающей территории 3 объектов:
- ООО СП "Ваньеганнефть",
- ЗАО Компания "Сибойл",
- АНК "Башнефть".

Отбор проб почвы и растительности проводился по ярусам:
- почва на поверхности, на глубине 2-3 и 5-6-см.,
- мхи,
- травы,
- низкорослые кустарники,
- высокорослые кустарники,
- деревья лиственных пород,
- деревья хвойных пород.

Исследовалась вода проток и малых рек, протекающих по территории нефтепромысла на содержание естественных и искусственных радионуклидов.

Кроме того, питьевая вода источников централизованного водоснабжения исследовалась в соответствии с СанПиН 2.1.4.559-96 "Питьевая вода. Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения. Контроль качества.".

Распределение и накопление ИРН и ЕРН по годам разными растениями происходит неравномерно. Какой-либо закономерности не установлено из-за недостаточного количества исследованных проб. Превышение требований СанПиНа зарегистрировано не было.

Изучение радиоэкологической обстановки на объектах нефтепромыслов Нижневартовского района ведется 4 года. Накоплен значительный материал, но недостаточный для того, чтобы делать какие-либо глобальные выводы. причин для этого несколько:
- крупные нефтегазодобывающие предприятия выделяют настолько мало денежных средств, что даже учитывая то, что ЦГСЭН 30-50% работы делает дополнительно к заключенным договорам бесплатно, этого объема недостаточно, чтобы провести первичное обследование предприятия в том объеме, который предусмотрен пакетом документов Минтопэнерго,
- малые предприятия - ООО СП "Ваньеганнефть", ЗАО Компания "Сибойл", АНК "Башнефть" провели обследование только в 1999 году, т.е. ни изучена динамика накопления и распространения ЕРН и ИРН,
- все полученные данные оседают в отделах у специалистов, не используются в работе, не пересылаются в Центр радиационной безопасности Минтопэнерго для анализа и обобщения,
- существующие ведомственные нормативы значительно расходятся с НРБ-99 и СПОРО-85 в сторону ужесточения,
- нет утвержденных методик исследования нефти, подтоварной воды и т.д., работа ведется в соответствии с указаниями пакета документов Минтопэнерго: т.е. по инструкциям по эксплуатации используемых средств измерений. При использовании в работе альфа-, бета-спектрометрического комплекса "Прогресс" результаты исследования зачастую идут в виде "0±7,36". То есть, программу "Прогресс" (НПП "Доза" ВНИИФТРИ), возможно, и можно использовать, но при этом нужны методики специальной подготовки проб (концентрирование и т.п.).

Если до 1998 года у нас были только 4 документа из 7 пакета документов Минтопэнерго, и все методические указания по организации радиационного контроля носили рекомендательный характер, то в 1999 году вышел Закон Ханты-Мансийского Автономного Округа "О радиационной безопасности" от 5.01.99 г. № 3-03, где в ст. 28 указано, что предприятия добывающей и перерабатывающей отраслей промышленности и ТЭК, не связанные с ядерно-топливным циклом, обязаны проводить радиационный контроль и принимать меры по радиационной безопасности. Несмотря на это руководство большинства нефтегазодобывающих предприятий не считает себя обязанным заниматься организацией радиационного контроля.

К сожалению, нет нормативных и даже методических документов о радиационном контроле за скважинами, в которых оставлены, а затем "захоронены" ИИИ. На нашей территории - это источники гамма- и нейтронного излучения: цезий-137 с периодом полураспада 30 лет и плутониево-бериллиевые источники с периодом полураспада плутония-238 - 87,74 года, которые применяются при радиоактивном каротаже.

Необходимость в НТД есть, т.к. все чаще встает вопрос, можно ли их эксплуатировать, на каком расстоянии бурить новые скважины и т.п.

В настоящее время разработаны "Научно-методические основы формирования федеральной системы радиационно-экологической безопасности контроля в ТЭК России" (система РЭБК ТЭК). Имеется проект "Концепции создания системы РЭБК ТЭК", в разработке которого принимали участие не только ГЛАРК Минтопэнерго России, но и ГНЦ РФ "ФЭИ" Минатома России ( г.Обнинск ), ЦМИИ ГП "ВНИИФТРИ" Госстандарта России.

Ведется планомерный радиационный контроль на объектах, где производились ядерные взрывы, например, в Пермской области, но ведь любая работа бесмысленна без контроля, т.е. без проведения аналогичных исследований на незагрязненной территории, которой и может стать Нижневартовский район.

«Да» атомной энергии

Ядерная энергетика — очень молодая отрасль науки и техники. Первая в мире атомная электростанция (АЭС) в г. Обнинске Калужской области вошла в строй всего четверть века назад: 27 июня 1954 г. она выдала электрическую энергию в Московскую энергосеть. За это время ядерная энергетика выросла, возмужала и вышла на широкую дорогу промышлен­ного производства электрической энергии во многих странах мира — Со­ветском Союзе, США, Англии, Франции, Канаде, Италии, ФРГ, Японии, Швеции, Чехословакии, ГДР, Болгарии, Швейцарии, Испании, Индии, Пакистане, Аргентине и др. |На январь 1981 г. во всем мире введено бо­лее 250 атомных электростанций (блоков) установленной мощностью около 140 млн. кВт. Ни одна отрасль техники не развивалась так быстро, как ядерная энергетика. Обычным электростанциям понадобилось 100 лет, чтобы достичь такого уровня инженерной техники и эксплуатации, какого достигла уже к 1975 г. ядерная энергетика.

Ученые-атомщики, руководители соответствующих фирм и ведомств по-разному представляют развитие ядерной энергетики, но в одном они сходятся: у нее хорошие перспективы и в недалеком будущем на какое-то время она станет одним из основных источников получения энергии, в том числе электрической. Предполагается, что уже в 1985 г. рост атомно-энергетических мощностей в мире достигнет 300 млн. кВт (некоторые экспер­ты считают эту цифру завышенной, учитывая энергетический кризис и некоторые политические обстоятельства). На Х конгрессе Международной энергетической конференции в Стамбуле в сентябре 1977 г. суммарная мощность АЭС в мире к 2000 г. определялась в 1300—1650 млн. кВт. По новым прогнозам зарубежных ученых, удельный вес мировой ядерной энергетики к 2000 г. достигнет 25—30% (и даже 40%) общей выработки электрической энергии в мире. .Такому росту ядерной энергетики способствует ряд обстоятельств:

с одной стороны — уменьшение природных запасов органического топлива (газа, нефти, а во многих экономических районах и угля), их повышенная сернистость, зольность, вызывающая загрязнение окружающей среды при сжигании этих видов топлива, резкое удорожание и сложность их добычи и т. д., с другой — постоянный рост потребности человечества в топливе и электроэнергии. При истощении запасов органического топлива исполь­зование ядерного топлива (урана, тория и плутония) — пока единствен­ный реальный путь надежного обеспечения человечества так необходимой ему энергией. Как известно, при делении ядер урана и плутония выделяет­ся огромное количество энергии, использование которой позволяет созда­вать крупные АЭС промышленного типа.

Уран широко распространен в природе, но богатых по содержанию залежей урановых руд (как, скажем, железа или угля) нет. Промышлен­ные урансодержащие руды имеют очень небольшую концентрацию: 0,1-0,5% и даже меньше 0,08-0,05%. Правда, встречаются богатые, уни­кальные месторождения с содержанием до 10%, но их очень мало и за­пасы урана в них сравнительно невелики. В земной коре урана много, но он почти весь находится в рассеянном состоянии и не в собственно урановых, а в урансодержащих минералах, где он изоморфно замещает торий, цирконий, редкоземельные элементы. Уран содержится и в гранитах, и в базальтах, но концентрация его там настолько мала (4-10~4 и 1-10~*% соответственно), что извлечение станет возможным только в очень отдаленном будущем. Однако эти микроколичества представляют собой грандиозную цифру: 300 тыс. Q (=3-1014 кВт-ч). По некоторым прогно­зам, запасы урана и тория в земной коре могут обеспечить челове­чество энергией на протяжении 3 млрд. лет при ежегодном потреблении З-Юккал.

Поиск урана, и, главное, определение его запасов как очень ценного и важного стратегического сырья проводится во многих странах мира. В капиталистических странах первые три места по запасам и содержанию урана в рудах занимают Канада, ЮАР и США. По добыче первое место занимают США, второе Канада, третье ЮАР. В природе есть один-единственный изотоп урана, который может под­держивать цепную реакцию деления ядра урана — это уран-235. В одном акте деления ядра урана выделяется энергия на один атом в 200 млн. раз большая, чем при любой химической реакции. Если бы все изотопы в 1 г урана подверглись делению, то выделилась бы энергия в 20 млн. ккал, что соответствует 23 тыс. кВт-ч тепловой энергии. Однако в природном Уране очень трудно получить самоподдерживающуюся цепную реакцию деления, так как делящийся изотоп уран-235 в нем содержится в незна­чительном количестве—всего 0, 71%, а остальные 99, 29% составляет не­делящийся изотоп уран-238. Поэтому создаются специальные устройства — ядерные котлы, реакторы, в которых при определенных контролируемых условиях происходит самоподдерживающаяся цепная реакция деления ядер тяжелых элементов. Такие реакторы, имеющие в своем составе ядер­ное топливо (горючее), специальные виды замедлителя нейтронов, отра­жатель и охладитель, позволяют из неделящихся изотопов урана-238 или тория-232 получать делящиеся изотопы урана-233 и новый вид ядерного топлива — плутоний-239, которые затем могут быть использованы в ка­честве ядерного горючего.