Угол отсечки легко найти из равенства
Функция тока определяется следующим выражением:
При
Амплитуды спектральных составляющих тока через НЭ определяются через коэффициенты Берга:
где коэффициенты
Рис. 8. Графики функций Берга
Анализ графиков функций
Таким образом, алгоритм вычисления амплитуд гармоник тока через НЭ может быть следующим:
1. По известным значениям
2. По формуле (20) или графически определяется величина
3. С помощью таблицы или по графикам (рис. 8) находят
4. Вычисляются амплитуды гармоник:
4. Воздействие двух гармонических сигналов на безынерционный НЭ
Для выявления основных закономерностей рассмотрим реакцию НЭ на воздействие двух гармонических сигналов. Такое воздействие принято называть бигармоническим:
Для упрощения анализа на первом этапе воспользуемся аппроксимацией ВАХ нелинейного элемента полиномом второй степени:
Выполнив тригонометрические преобразования по формулам
и сгруппировав члены, получим следующее спектральное представление тока
Анализ выражения (24) позволяет сделать вывод о значительном обогащении спектра тока по сравнению со спектром входного сигнала. В спектре выходного колебания, кроме слагаемых, имевшихся во входном сигнале – постоянной составляющей и гармоник на частотах ω1 и ω2, возникли гармонические составляющие суммарной и разностной частоты (ω1 + ω2) и (ω1 – ω2), а также компоненты с удвоенными частотами 2ω1, 2ω2.
При увеличении порядка аппроксимирующего полинома проблема вычисления амплитуд спектральных составляющих сводится к громоздким выкладкам, приводить которые в данной лекции нецелесообразно. В самом общем случае, когда ВАХ представлена полиномом n-й степени, спектр тока через НЭ (в случае бигармонического воздействия) будет включать составляющие с частотами
где p и q – целые числа, причем (p + q) ≤ n.
Сумма (p + q) называется порядком комбинационного колебания. Комбинационное колебание в общем случае можно записать
где k – коэффициент пропорциональности.
При построении различных радиотехнических устройств, являющихся элементами приемных и передающих трактов (модуляторы, детекторы, преобразователи частоты, дифференциальные усилители), приходится использовать нелинейные цепи с бигармоническим воздействием. При этом с помощью фильтрации выделяются нужные комбинационные составляющие (т. е. создающие полезный эффект в нагрузке в зависимости от реализуемой операции) и соответственно подавляются побочные продукты взаимодействия двух сигналов
Параметрический режим работы нелинейного элемента
При реализации некоторых устройств аппаратуры связи, работа которых основана на использовании нелинейных электрических цепей (элементов) и бигармоническом воздействии, часто возникает практическая ситуация, когда амплитуда одного из напряжений значительно больше другого. Например, в преобразователе частоты супергетеродинного радиоприемного устройства амплитуда преобразуемого сигнала значительно меньше амплитуды напряжения местного источника гармонического напряжения (гетеродином). В этих условиях НЭ для сигнала с малой амплитудой выступает в качестве параметрического элемента. Графическая иллюстрация такого режима представлена на рисунке 9.
Рис. 9. Графическая иллюстрация параметрического режима работы
К нелинейному элементу с вольт-амперной характеристикой
Учитывая малую величину напряжения
Выше уже говорилось о том, что очень важно обеспечить минимизацию побочных продуктов взаимодействия напряжений
Если на вход НЭ с характеристикой
а амплитуда напряжения