Смекни!
smekni.com

Аппроксимация характеристик нелинейных элементов и анализ цепей при гармонических воздействиях (стр. 2 из 4)

Как и в выражении (6.6),

– ток покоя (постоянная составляющая выходного тока);
– крутизна характеристики в точке
. Для определения значений
и
необходимо составить систему уравнений:

(5)

Отсюда можно записать:

3. Рабочая точка является точкой перегиба характеристики (рис. 4).

Рис. 4. Рабочая точка ВАХ – точка перегиба

В точке перегиба все четные производные функции

обращаются в нуль, поэтому в выражении (3) будут присутствовать только слагаемые с нечетными степенями
, k = 1, 2, 3, … .

Напомним, что точка перегиба – точка кривой, в которой:

1) вогнутость (выпуклость) кривой меняется на выпуклость (вогнутость);

2) кривая "лежит" по разные стороны от касательной в этой точке.

В общем случае аппроксимирующий полином может быть любого, сколь угодно высокого порядка. Однако в большинстве практических случаев достаточную для инженерной практики точность дает полином третьей степени:

(6)

На рисунке 4 график, соответствующий (6), показан пунктирной линией. Рабочий участок ВАХ (динамический диапазон) определяется интервалом

. На границах этого интервала производные аппроксимирующей функции обращаются в нуль. Для нахождения коэффициентов
и
необходимо, как и в предыдущем случае, составить систему уравнений и решить ее относительно
и
:

(7)

Откуда

При очень больших амплитудах входного сигнала часто бывает удобнее заменять реальную характеристику идеализированной, составленной из отрезков прямых линий. Такое представление ВАХ называется кусочно-линейной аппроксимацией. На рисунке 5 показаны некоторые характерные примеры.

а б в

Рис. 5. Кусочно-линейная аппроксимация ВАХ

2. Графоаналитический и аналитический методы анализа

Графоаналитический метод анализа

Этот метод используется в тех случаях, когда отсутствует отсечка тока. Этот метод известен под названием трех (пяти, семи) ординат. Суть его заключается в следующем (рис. 6): пусть на НЭ воздействует напряжение

. (8)

Рис. 6. Иллюстрация графоаналитического метода анализа

Ток через НЭ будет представлять собой периодическое колебание сложной формы. Аналитически его можно записать в виде ряда Фурье

(9)

В реальных исследованиях приходится ограничивать число членов ряда, а для определения амплитуд

используются вышеназванные методы. Практически наиболее часто применяются методы трех и пяти ординат.

Суть метода заключается в следующем: ВАХ нелинейного элемента делится на три (пять) участка, точки 1, 3, 5 или 1, 2, 3, 4, 5 (рис. 6.6), при этом фиксируются значения входного и выходного сигналов (

и
). Затем составляется система из трех (пяти) уравнений для токов и решается относительно неизвестных
и т. д. Из графика на рисунке 6 видно, что в точках 1–5 будут следующие значения амплитуд и фаз входного и выходного сигналов (табл. 1).

Таблица 1

№точек Мгновенная фаза входного сигнала,
Амплитуда входного сигнала, u(t) Амплитуда выходного тока
1 0
2
3
4
5

Для метода трех ординат ряд (9) сокращается до трех слагаемых:

, (10)

Составляется система из трех уравнений и решается относительно

:

(11)

Откуда

(12)

Если требуется определить большее число спектральных составляющих, аналогичным методом составляется и решается система из требуемого числа уравнений. Данный метод применим при слабо выраженной нелинейности ВАХ и отсутствии отсечки тока.

Аналитический метод анализа

Если работа НЭ (нелинейной цепи) происходит в режиме малого сигнала и, как правило, без отсечки выходного тока, для аппроксимации используется степенной полином вида:

. (13)

Пусть на входе действует напряжение

При подстановке его в (13) получим:

(14)

Воспользовавшись известными формулами

(15)

представим равенство (14) так:

Отсюда вытекают следующие соотношения для расчета постоянной составляющей тока и амплитуд гармоник:

(17)

3. Анализ цепей методом угла отсечки

При работе нелинейной цепи с большими амплитудами входного сигнала, когда степенная аппроксимация не дает хороших результатов применяется кусочно-линейная аппроксимация. Работа НЭ происходит при этом с отсечкой выходного тока, и большое применение находит аналитический метод анализа, получивший название метода угла отсечки.

Форма тока в цепи, содержащей НЭ с характеристикой

(18)

видна из графика, представленного на рисунке 7 (при условии, что на вход подано напряжение

).

Рис. 7. График тока через НЭ при работе с отсечкой тока

График тока имеет характерный вид периодической последовательности косинусоидальных импульсов, которые характеризуются амплитудой

и длительностью 2
, где
– угол отсечки, числено равный половине той части периода, в течение которого через НЭ протекает ток. Период повторения импульсов равен
. Спектральный состав такого периодического колебания легко определить, разложив функцию тока в ряд Фурье: