U,B I, A - аналитическое решение - численное решениеРисунок 2.2 Изменение напряжения на конденсаторе С4
- аналитическое решение - численное решениеРисунок 2.3 Изменение тока в катушке индуктивности L3
4. Анализ цепи операторным методом при
апериодическом воздействии
4.1 Определение функции передачи, её нулей и полюсов
Анализу подлежит схема представленная на рис. 3. Начальные условия в цепи нулевые, в момент t = 0 на вход цепи источником напряжения подан импульс (рисунок 1) с амплитудой 10 В и длительностью 60 мкс., j(t) = 0.
Рисунок 3.Операторная схема замещения.
Составим уравнения в операторной форме по законам Кирхгофа, найдём отношение
. Это отношение является функцией передачи . Таким образом, функция передачи будет иметь вид:
(7)Полюсы функции передачи могут быть найдены путём нахождения корней полинома второй степени, находящегося в знаменателе самой функции:
Таким образом:
Совпадение полюсов функции передачи
и с собственными значениями матрицы - и даёт дополнительную информацию о правильности нахождения передаточной функции.Аналогично из числителя функции передачи находятся нули функции:
Наиболее наглядным способом охарактеризовать передаточную функцию является графическое расположение ее полюсов и нулей на комплексной плоскости, называемой диаграммой полюсов-нулей (рис.3.1).
Рисунок 3.1. Диаграмма полюсов-нулей.
Так как полюсы передаточной функции лежат в левой полуплоскости, в линейной пассивной цепи имеются резистивные элементы, в результате чего будет происходить затухание свободной составляющей напряжения. Передаточные функции, полюса которых не лежат в правой полуплоскости комплексной плоскости, называются устойчивыми.
Нули передаточной функции при учете потерь могут располагаться в любой части комплексной плоскости.
4.2 Определение переходной и импульсной характеристик
Переходная характеристика цепи представляет собой реакцию цепи на воздействие единичной ступенчатой функции (функции Хэвисайда 1(t)) и может быть найдена как обратное преобразование Лапласа от
, либо с помощью формулы разложения: , (8) где и числитель и знаменатель передаточной функции соответственно, а - корни выражения :
Таким образом, подставляя корни
и, применяя преобразование Эйлера, получим: Импульсная характеристика цепи
представляет собой реакцию цепи на воздействие единичной импульсной функции и может быть найдена как обратное преобразование Лапласа от передаточной функции, либо с помощью формулы разложения: , (9) где и числитель и знаменатель передаточной функции соответственно, а - полюсы : Таким образом:
Первое слагаемое определяется действием на входе цепи d - импульса тока и существует только для t=0. В дальнейшем переходной процесс протекает за счет энергии, накопленной в электрическом поле конденсатора и магнитном поле индуктивности в результате действия d - импульса тока. Из приведенного выражения видно, что, как и в первом случае, переходной процесс носит затухающий колебательный характер с частотой, равной собственной частоте рассматриваемой цепи: wсв = 41574 рад/сек.Подобного вида решения (с d -функцией) возникают всякий раз, когда степени полиномов числителя и знаменателя передаточной функции оказываются равными. Коэффициент при
соответствует части входного импульса поступающей в нагрузку.
Рисунок 3.2. Импульсная и передаточная характеристики
4.3 Определение напряжения на нагрузке
Входной импульс в данном задании представляет собой знакопеременное прямоугольное напряжение. Его можно представить как сумму следующих функций:
Применяя теорему Запаздывания, найдём операторное изображение для одиночного импульса напряжения:
(10)Так как
, выразим : (11)Подставив в (11) выражения (10) и (7), получим:
Для того чтобы найти оригинал этой функции, воспользуемся таблицами для преобразований Лапласа: