Смекни!
smekni.com

Анализ цепи во временной области различными методами (стр. 2 из 4)

Начальным значениям переменных состояния соответствует k = 0. Оценить временной интервал Dtрасч расчета можно на основе известных собственных значений матрицы
как Dtрасч = 4/|lmin|. Здесь |lmin| - минимальное собственное значение, если собственные значения являются вещественными, отрицательными и различными, или вещественная часть комплексного собственного значения, если собственные значения являются комплексно сопряженными. Тогда шаг расчета может быть найден исходя из выражения: h = Dtрасч/N. N - число шагов, на которые разбит интервал Dtрасч.Положим N=80, тогда h = 2,25*10-6. Погрешность расчёта пропорциональна h2 .

Таблица значений переменных состояния на каждом шаге.

Таблица 1.

U,B I, A

- аналитическое решение

- численное решение

Рисунок 2.2 Изменение напряжения на конденсаторе С4


- аналитическое решение

- численное решение

Рисунок 2.3 Изменение тока в катушке индуктивности L3


4. Анализ цепи операторным методом при

апериодическом воздействии

4.1 Определение функции передачи, её нулей и полюсов

Анализу подлежит схема представленная на рис. 3. Начальные условия в цепи нулевые, в момент t = 0 на вход цепи источником напряжения подан импульс (рисунок 1) с амплитудой 10 В и длительностью 60 мкс., j(t) = 0.


Рисунок 3.Операторная схема замещения.

Составим уравнения в операторной форме по законам Кирхгофа, найдём отношение

. Это отношение является функцией передачи
.

Таким образом, функция передачи будет иметь вид:

(7)

Полюсы функции передачи могут быть найдены путём нахождения корней полинома второй степени, находящегося в знаменателе самой функции:

Таким образом:

Совпадение полюсов функции передачи

и
с собственными значениями матрицы
-
и
даёт дополнительную информацию о правильности нахождения передаточной функции.

Аналогично из числителя функции передачи находятся нули функции:

Наиболее наглядным способом охарактеризовать передаточную функцию является графическое расположение ее полюсов и нулей на комплексной плоскости, называемой диаграммой полюсов-нулей (рис.3.1).

Рисунок 3.1. Диаграмма полюсов-нулей.

Так как полюсы передаточной функции лежат в левой полуплоскости, в линейной пассивной цепи имеются резистивные элементы, в результате чего будет происходить затухание свободной составляющей напряжения. Передаточные функции, полюса которых не лежат в правой полуплоскости комплексной плоскости, называются устойчивыми.

Нули передаточной функции при учете потерь могут располагаться в любой части комплексной плоскости.

4.2 Определение переходной и импульсной характеристик

Переходная характеристика цепи представляет собой реакцию цепи на воздействие единичной ступенчатой функции (функции Хэвисайда 1(t)) и может быть найдена как обратное преобразование Лапласа от

, либо с помощью формулы разложения:

, (8) где
и
числитель и знаменатель передаточной функции
соответственно, а
- корни выражения
:


Таким образом, подставляя корни

и, применяя преобразование Эйлера, получим:

Импульсная характеристика цепи

представляет собой реакцию цепи на воздействие единичной импульсной функции
и может быть найдена как обратное преобразование Лапласа от передаточной функции, либо с помощью формулы разложения:

, (9) где
и
числитель и знаменатель передаточной функции
соответственно, а
- полюсы
:

Таким образом:


Первое слагаемое определяется действием на входе цепи d - импульса тока и существует только для t=0. В дальнейшем переходной процесс протекает за счет энергии, накопленной в электрическом поле конденсатора и магнитном поле индуктивности в результате действия d - импульса тока. Из приведенного выражения видно, что, как и в первом случае, переходной процесс носит затухающий колебательный характер с частотой, равной собственной частоте рассматриваемой цепи: wсв = 41574 рад/сек.Подобного вида решения (с d -функцией) возникают всякий раз, когда степени полиномов числителя и знаменателя передаточной функции оказываются равными. Коэффициент при

соответствует части входного импульса поступающей в нагрузку.

Рисунок 3.2. Импульсная и передаточная характеристики

4.3 Определение напряжения на нагрузке

Входной импульс в данном задании представляет собой знакопеременное прямоугольное напряжение. Его можно представить как сумму следующих функций:

Применяя теорему Запаздывания, найдём операторное изображение для одиночного импульса напряжения:

(10)

Так как

, выразим
:

(11)

Подставив в (11) выражения (10) и (7), получим:

Для того чтобы найти оригинал этой функции, воспользуемся таблицами для преобразований Лапласа: