Смекни!
smekni.com

Анализ нагруженности плоского рычажного механизма (стр. 4 из 4)


2. ПРОЕКТНЫЙ РАСЧЕТ МЕХАНИЗМА НА ПРОЧНОСТЬ

В результате динамического анализа плоского рычажного механизма были определены внешние силы, действующие на каждое звено и кинематическую пару. Этими внешними усилиями являются силы инерции Fi, моменты инерции Mи реакции в кинематических парах R. Под действием внешних сил звенья плоского механизма испытывают деформации. В данном механизме преобладают совместные деформации изгиба и растяжения.

Анализ нагруженной группы Асура 3-5 показывает, что звено 3 во время работы механизма испытывает совместное действие изгиба и растяжения. Для оценки прочности механизма необходимо при помощи метода сечений определить величину внутренних усилий, действующих в сечениях. Значения всех сил сведем в таблицу.

Таблица 2.1

0.16 0.208 0.832 0.656 0.32 0.352

2.1 Построение эпюр En,Nz, H*M

Нагруженность звена позволяет выделить два участка: ES3 и S3F. Использование метода сечений для нормальной силы NZ дает следующие уравнения:

I участок

(2.1)


II участок

(2.2)

По этим данным строим эпюру NZ.

Для поперечной силы QY на соответствующих участках записываются такие уравнения:

I участок

(2.3)

II участок

(2.4)

Согласно с полученными значениями строим эпюру QY.

Аналитические уравнения записываем также для изгибающего момента на участках I и II:

I участок

(2.5)


II участок

(2.6)

(2.7)

Эпюру МХ строим по полученным значениям моментов.

Из эпюр МХ и NZ видно, что опасное сечение звена проходит через точку S3.

Mmax =0.24Нмм

NZmax = 0.656 H

2.2 Подбор сечений

2.2.1 Подбор прямоугольного сечения

Пусть для прямоугольного сечения h=2b. Тогда:

F=h.b=2b2 (2.8)

(2.9)

b=U+V(2.10)

где – U и V вычисляются по формулам:


(2.11)

(2.12)

V=0,25*10-2 м

U=0 м

b=0,25*10-2м

h=2×b=0,5×10-2 м

2.2.2 Подбор круглого сечения

Для круглого сечения используется отношение:

(2.13)

(2.14)

Подстановки и преобразования дают также кубическое уравнение:

(2.15)

Корень этого уравнения равен:

D=U1+V1 (2.16)

где – U1 и V1 вычисляются по формулам:


(2.17)

(2.18)

D=0,5×10-2 м=5 мм

2.2.3 Подбор сечения в виде двутавра

Для сечения в виде двутавра параметры находим подбором, подставляя в выражение (2.16) значение WX=0,0017см3. Принимая [σ] = 140 МПа, выбираем двутавр с параметрами Н = 10 мм, В = 7 мм, S = 0,45 мм, ГОСТ 13621-79, изготовленный из конструкционной стали марки (ГОСТ 8239-56).

Графическая часть II раздела курсовой работы представлена на листе формата А2.


ВЫВОДЫ

В ходе выполнения курсовой работы были изучены методы анализа и расчёта плоских рычажных механизмов. Структурный анализ механизма показал, что данный плоский рычажный механизм является механизмом второго класса т. е. для его работы необходимо только одно ведущее звено. В результате динамического анализа были определены силы, реакции, моменты, скорости и ускорения, действующие на каждое из звеньев механизма.

Результатом расчета прочностных характеристик плоского рычажного механизма явился подбор параметров опасного сечения. Параметры прямоугольного сечения – b=2,5 мм и h= 5 мм, для круглого – D=5 мм, кроме того подобран профиль Ст3 430001×НД

. Наиболее рациональным является прямоугольная форма сечения.

ПЕРЕЧЕНЬ ССЫЛОК

1 Степин П. А. Сопротивление материалов. Изд. 5-е, перераб. и доп. Учебник для студентов машиностроительных вузов. М., «Высшая школа», 2003.

2 Методические указания к курсовой работе по курсу «Теоретическая механика» для студентов специальностей 7.091807 и 7.091002 / Автор Евстратов Н. Д. – Харьков: ХТУРЭ, 1999. – 40 с.

3. Артоболевский И. И. Теория механизмов и машин. – М.: Наука, 2002.-640с.

4 Тарг С. М. Краткий курс теоретической механики. – М.: Высш. Шк. 1999.-416с.

5 Конспект лекций .

6 Анурьев В.И. Справочник конструктора-приборостроителя. – М.: «Приборостроение» 1997 688 с.