Смекни!
smekni.com

Анализ нагруженности плоского рычажного механизма (стр. 3 из 4)

(1.3.3)

где

— момент инерции звена,

— угловое ускорение звена.

1.3.1 РАСЧЕТ СИЛ И ГЛАВНЫХ МОМЕНТОВ ИНЕРЦИИ ЗВЕНЬЕВ МЕХАНИЗМА

.

mAB = 2,6 кг.

mCA0,008кг.

mEF =0.0105кг.

mDC=0.005кг

,

Силы и главные моменты инерции приведены в таблице

222.3 0.89 0.48 0.5 0 0.89
0.180.171

Таблица 1.3.1. Рассчитанные значения сил и моментов инерции звеньев механизма

1.3.2 ОПРЕДЕЛЕНИЕ РЕАКЦИЙ В КИНЕМАТИЧЕСКИХ ПАРАХ

Силовой анализ механизма начинаем с группы Ассура 3-5, наиболее удалённой от ведущего звена. Связи в шарнирах заменяются реакциями

и
.

В шарнире F реакция неизвестна по модулю и направлена по горизонтали. Обозначим в точке

силу инерции. Обозначим также вес
звена FE и вес ползуна Р.

Сумма моментов относительно точки F равна нулю:

(1.3.4)

где

,
— плечи соответствующих силы
и веса

Находим

:

(1.3.5)

Составляем векторное уравнение:

(1.3.6)

С учётом этого уравнения строим замкнутый силовой многоугольник. На чертеже выбираем полюс

. От него проводим вектор произвольной длины по направлению силы
.Вычисляем масштабный коэффициент:

(1.3.7)


Далее к вектору

достраиваем другие составляющие уравнения (1.3.6), рассчитывая длину векторов при помощи масштабного коэффициента.

Определяют реакции в кинематической паре 2-4. Реакции в шарнирах A и D нужно разложить на составляющие по направлению осей

и
, и перпендикулярные им:
и
. Тангенциальные составляющие можно найти, если записать уравнение суммы моментов каждого звена относительно точки С.

Условия равновесия звеньев 2 и 3 соответственно:

(1.3.9)

(1.3.10)

Рассмотрим уравнение равновесия группы в целом. Запишем векторное уравнение равновесия этой группы:

(1.3.11)

В этом уравнении все составляющие, кроме

, известны по модулю и по направлению. Нужно построить замкнутый силовой многоугольник, откладывая последовательно векторы сил.

(1.3.12)


Рассмотрим уравнение равновесия группы в целом. Запишем векторное уравнение равновесия этой группы:

(1.3.13)

В этом уравнении все составляющие, кроме

, известны по модулю и по направлению. Нужно построить замкнутый силовой многоугольник, откладывая последовательно векторы сил.

Теперь определим уравновешивающую силу и уравновешивающий момент, действующий на кривошип AB.

На кривошип AB действует шатун силой

. Считается, что сила
приложена перпендикулярно звену AB. В этом случае уравнение моментов всех сил, приложенных к кривошипу относительно точки B, имеет вид:

(1.3.12)

(1.3.13)

(1.3.14)

Найденные при силовом анализе механизма величины представлены в таблице 1.4.

57 48 65 0.22 0.6 0.8 0.79 0.7 0.9 73 1.9

Таблица 1.4. Силовой анализ механизма