p3-6-7 = 1- q3-6-7 = 1- q3-6 ∙q3-7 - ВБР блока параллельных элементов Z3-7 + Z3-6
q4-6-7 = 1- p3-6-7 = 1- p4-3 ∙p3-6-7 - ВБР блока последовательных элементов Z4-3 и группы элементов Z3-7 + Z3-6
p2-6-7-8 = 1- q2-6-7-8 = 1- q2-6∙ q2-7-8 - ВБР блока параллельных элементов Z2-6 и группы элементов Z2-3 + Z3-7 + Z3-8
p4-8-7-6 = 1- q4-8-7-6 = 1- q4-8∙ q4-6-7 - ВБР блока параллельных элементов Z4-8 и группы элементов Z4-3 + Z3-7 + Z3-6
q1* = 1 - p1-2∙p2-6-7-8 - ВО питания на пути от узла №1 на схеме замещения,
q4* = 1 – p4-5∙p4-8-7-6 - ВО питания на пути от узла №2 на схеме замещения
и запишем окончательно:
Q= q1*∙ q4* ; kГ(t) = P(Z = 1) = 1 – Q. (1.15)
Таблица 1.5 Расчет показателей надежности на двухлетний период эксплуатации (прогноз)
Из таблицы и графиков видно, что критерий (1.12) нарушается уже в четвертом квартале 1-го года последующей эксплуатации:
kГ(0,75) > kГдоп > kГ(1), или: 0.875 > 0,84> 0,805
поэтому tдоп = 0,5 и техническое обслуживание (профилактическое) следует назначить либо в конце второго квартала, либо в начале третьего квартала. В данном случае данные с загрублённой схемы и с развёрнутой схемы совпали.
Часть 2. Анализ надежности и резервирование технической системы.
2.1 Введение
В сложных технических устройствах без резервирования никогда не удается достичь высокой надежности, даже используя элементы с высокими показателями безотказности.
Система со структурным резервированием – это система с избыточностью элементов, т. е. с резервными составляющими, избыточными по отношению к минимально необходимой (основной) структуре и выполняющими те же функции, что и основные элементы. В системах с резервированием работоспособность обеспечивается до тех пор, пока для замены отказавших основных элементов имеются в наличии резервные.
По способу включения резервных элементов резервирование подразделяют на два вида:
· активное (ненагруженное) – резервные элементы вводятся в работу только после отказа основных элементов
· пассивное (нагруженное) – резервные элементы функционируют наравне с основными (постоянно включены в работу). Этот вид резервирования достаточно широко распространен, т.к. обеспечивает самый высокий коэффициент оперативной готовности.
Кратко остановимся на расчете надежности систем с ограничением по нагрузке.
Если условия функционирования таковы, что для работоспособности системы необходимо, чтобы по меньшей мере r элементов из n были работоспособны, то число необходимых рабочих элементов равно r, резервных – (n - r). Отказ системы наступает при условии отказа (n – r + 1) элементов. Число r, в общем случае, зависит от многих факторов, но в большинстве расчетов надежности требуется обеспечить пропускную (или нагрузочную) способность системы в заданном режиме эксплуатации. При этом, отказы можно считать независимыми только тогда, когда при изменении числа находящихся в работе элементов не наблюдается перегрузки, влияющей на возможность возникновения отказа. ВБР такой системы определяется с помощью биномиального распределения.
Для заданной основной схемы электротехнического объекта следует:
· Определить вероятность работоспособного состояния объекта для расчетного уровня нагрузки и построить зависимость данного показателя надежности от нагрузки.
· Обеспечить заданный уровень надежности объекта резервированием его слабых звеньев с учетом требований минимальной избыточности и стоимости резервирования.
2.3 Теоретические сведения
Для повышения надежности способом структурного резервирования (повышением избыточности) предлагается использовать элементы нескольких типов, отличающихся степенью надежности, пропускной способностью и стоимостью. При этом избыточными могут быть или уровни надежности, или уровни пропускной способности, или количество элементов. Допускается также обоснованный ввод дополнительных связей.
Предлагаемый способ оценки надежности сложной установки (объекта) относится к аналитическим методам. Он основывается на общей теореме о повторении опытов теории вероятностей, подчиняющейся теоремам сложения и умножения вероятностей, формуле полной вероятности и др. [3].
Предположим сначала, что установка состоит из n одинаковых бинарных элементов, состояния которых являются независимыми, совместными событиями. В качестве производящей функции при этом используется бином Ньютона:
(p[Z]+q[0])n=
pn[nZ] +Cn1pn-1 q[(n-1)Z] +Cn2pn--2 q[(n-2)Z]…+Cnmpn-mqm[(n-m)Z]+…qn[0]= =
= = 1. (2.1)Здесь р - вероятность работоспособного состояния каждого из элементов, образующих объект (установку). Производительность элемента обозначается буквой Z; q = 1-p - вероятность неработоспособного состояния элемента (производительность элемента при этом равна нулю). Слагаемые
(2.2)представляют собой вероятности нахождения любых (п-т) элементов объекта в работоспособном состоянии, а т - в неработоспособном из-за их отказа; при этом (п-т)Z- суммарная производительность всех элементов в m-ом состоянии.
Всего состояний объекта в таком случае получается (n + 1), что намного меньше, чем 2n, если рассматривать состояния n элементов без группировки их по критерию мощности. Состояния (n + 1) составляют полную группу событий (соответствующих состояний) и поэтому сумма их вероятностей (см. формулу (2.1)) равна 1.
Для вычисления слагаемых в (2.2) можно воспользоваться рекуррентной формулой:
которая следует из отношения:
Pт+1 / Pт =
/ ,и дает возможность использовать удобный алгоритм расчета вероятности следующего состояния по уже известной вероятности Pтпредыдущего расчетного состояния.
Развитием этого метода является применение производящей функции вида:
S(Z) =
, (2.3)позволяющей рассчитывать надежность объекта, который состоит из разных по надежности элементов, отличающихся производительностью. Выражение (2.3) является более универсальным, чем (2.1), но расчеты состояний усложняются, так как должны быть перемножены между собой все двучлены и сгруппированы по одинаковой производительности (пропускной способности). Оценка работоспособности объекта в том или ином расчетном состоянии должна производиться в рамках рассматриваемого метода на основе составления и анализа так называемых структурных функций. Структурная функция - выражение, отображающее взаимосвязь групп элементов, соединенных последовательно или параллельно в смысле надежности. Последовательные и параллельные соединения элементов считаются простейшими структурами, легко заменяемыми одним эквивалентным элементом с соответствующей функцией распределения состояний элементов в группе.
Например, для системы, состоящей из двух элементов x1 иx2, число состояний равно 4. Примем также, что пропускная способность каждого элемента Ziравна нагрузке системы, тогда из (2.3) получим:
S(Z) =
= p1 p2 + p1 q2 + q1 p2 + q1 q2 (2.3а)Рассмотрим две простейшие системы с последовательным и параллельным соединением 2-х элементов.
При последовательном соединении, как известно, вероятность работоспособного состояния равна P(α(x1, x2)) = p1p2, где символ α обозначает структурную функцию последовательного соединения элементов. Тогда, на основании формулы полной вероятности,
Q(α(x1, x2)) = 1 - P(α(x1, x2)) = p1 q2 + q1p2 + q1q2.
Аналогично, при параллельном соединении, вероятность неработоспособного состояния равна Q (β(x1, x2))= q1q2 , поэтому P (β(x1, x2)) = 1- Q (β(x1, x2)) = p1p2 + p1 q2 + q1p2. Здесь символом β обозначена структурная функция параллельного соединения элементов.
Рассмотрим снова систему с последовательным соединением элементов. Пропускная способность группы последовательно соединенных элементов определяется элементом с наименьшей пропускной способностью:
Z[α(x1, x2,… xi … xn)] = min{Zi, i=1,..n } (2.4)
Производящая функция вида (2.3а) с использованием введенных обозначений (структурной функции последовательного соединения), для 2-х элементов, может быть записана в виде:
α(x1, x2) = p1p2[min { Z1, Z2}] + p1 q2[min { Z1, 0}] + q1p2[min { 0, Z2}] + q1q2[min { 0,0}] =
(p1p2)[min { Z1, Z2}] + (p1 q2 + q1p2 + q1q2)[0] =
P(α(x1, x2))[min { Z1, Z2}] + Q(α(x1, x2)) [0] = 1. (2.4а)
Отметим, что эквивалентный последовательный элемент так же является бинарным.
Рассмотрим теперь систему с параллельным соединением элементов. Пропускная способность группы n параллельно соединенных элементов равна сумме пропускных способностей элементов: