Смекни!
smekni.com

Альтернативные источники энергии (стр. 6 из 11)

Последнее десятилетие характеризуется определен­ными успехами в использовании тепловой энергии океана. Так, созданы установки мини-ОТЕС и ОТЕС-1 (OTEG — начальные буквы английских слов OceanThermalEnergyConversion, т. е. преобразование тепловой энергии оке­ана — речь идет о преобразовании в электрическую энер­гию). Установка мини-ОТЕС смогла отдать в электриче­скую сеть 12—15 кВт, а на собственные нужды потре­била около 35 кВт. Опыт, полученный при разработке и опытной эксплуатации установок мини-ОТЕС и ОТЕС-1, позволил приступить к проектированию тепловых океан­ских станций на сотни мегаватт.

Запасы энергии градиента солености, или осмоса (греч. «толчок», «давление»), по некоторым оценкам, не усту­пают тепловой энергии океана. Осмотическая энергия — наиболее «таинственный», т. е. наименее очевидный вид энергии океана, поскольку наши органы чувств эту энер­гию ие воспринимают.

Энергия течений Мирового океана по величине близка к энергии, получаемой от сжигания всех видов топлива на Земле в течение года (примерно 1020 Дж). Начаты ра­боты по использованию энергии Гольфстрима, самого мощного течения в Мировом океане. Предполагается использовать около 1 % его энергии. Авторы проекта считают, что эта цифра не должна заметно отразиться на общем балансе энергии течения.

По оценке Комиссии по экономии энергии и энерго­ресурсов Мировой энергетической конференции (МИРЭК), сегодня важным энергетическим ресурсом является био­масса, так как дает 10 % мирового потребления первичной энергии. Ожидается, что она будет играть такую же важ­ную роль в будущем обеспечении энергией при выработке технологического тепла и производства синтетических топлив. Синтетическое топливо из биомассы можно сжи­гать на электростанциях, использовать на транспорте или в промышленности. Часть биомассы доставляет Ми­ровой океан, предполагается, что доля океана в поставке биомассы будет возрастать. Рассматривается создание энергетических плантаций, для которых в океане имеются очень широкие возможности. По оптимистическим оцен­кам, углеводородное топливо из водорослей может произво­диться по цене, меньшей мировой рыночной цены на нефть.

Более трети поверхности Мирового океана (130 млн. км'") имеет дно, грунт которою пригоден для выращивания быстрорастущих водорослей, из которых можно легко получить горючие газы метан и этан, широко исполь­зуемые для самых разных целей. В настоящее время обра­щено внимание на выращивание бурой водоросли — весьма урожайной культуры (от 600 до 1000 т с гектара в сыром весе). Бурая водоросль не имеет корней, поэтому для нее не очень важен состав грунта. Растет она в толще морской воды, но вода должна быть достаточно богата питатель­ными солями и должно быть много солнца.

Имеются в Мировом океане и другие источники энер­гии. Например, обсуждался вопрос об использовании сероводорода — горючего газа с неплохой калорийностью. Сероводородом очень богато Черное море, и к тому же его количество там непрерывно возрастает. Есть сероводород и в других районах Мирового океана — общие запасы его очень велики (недостаток этого вида топлива — непри­ятный запах, но, возможно, будет найден способ его устранения).

Весьма перспективный вид энергии Мирового океана — это энергия волн. В океане много видов воли. Однако с точки зрения выработки электрической энергии заслу­живают внимания лишь три их типа: приливные волны, ветровые волны и зыбь. Ветровые волны обладают боль­шой разрушительной силой, т. е. несут значительную энер­гию. Несколько миллионов штормов ежегодно случается в Мировом океане. По подсчетам академика Н. В. Мель­никова, 1 км2 водной поверхности с волнами высотой около 5 м обладает мощностью около 3 млн. кВт. А штор­мовая погода может охватить площадь в несколько тысяч квадратных километров. Соответственно волновая мощ­ность Мирового океана оценивается цифрой около 3 млрд. кВт! Запасы энергии ветровых волн и зыби огромны, но степень разработанности проблемы ее использования пока недостаточна, лишь в последнее десятилетие были сде­ланы некоторые шаги в деле практического использования энергии ветровых волн и зыби — для выработки электри­ческой энергии Значительно раньше началось использование энер­гии приливных волн, отличающихся четкой регуляр­ностью: два раза в сутки в определенное время появля­ются приливные волны заранее известной высоты. Эти свойства — строгая периодичность и определенная вы­сота — позволили людям очень рано научиться использо вать их энергию: уже в XI в. строили мельницы, работа­ющие за счет энергии прилива (например, во Франции в г. Шербуре до сих пор действует старая мельница, ис­пользующая энергию приливных волн). В наши дни при­ливные электростанции — самые мощные среди других волновых электростанций, но их можно построить не на любом участке побережья (и, как правило, не там, где особенно нужна энергия). У нас в стране, например, при­рода распорядилась так, что самые мощные приливы име­ются вдали от индустриальных центров или районов с большим потреблением энергии. В Советском Союзе самые мощные приливы — у берегов Камчатки, где общая энергия приливных волн равна примерно 1019 Дж в год.

Ветровые волны и зыбь хороши тем, что для использо­вания их энергии не надо искать особых мест с благо­приятными географическими условиями, как для при­ливных волн. Они бывают на любой акватории — был бы ветер да пространство для разгона. Чтобы утилизировать энергию ветровых волн (и зыби), не надо строить больших и дорогих плотин, что также очень важное преимущество. Именно поэтому в разных странах ведутся исследования по выбору наилучших способов преобразования энергии ветровых волн и зыби. Созданы волноэнергетические уста­новки разных мощностей, использующие различные фи­зические принципы для преобразования энергии волн.

Почти полвека назад академик В. В. Шулейкин от­метил три основных направления, по которым шла кон­структорская мысль в решепии проблемы использования энергии поверхностных волн . На одно из первых мест он ставил использование энергии качки: движение по­плавка передается поршням насосов. Если учесть, что поплавок может иметь массу в сотни тонн, а размах коле­бательного движения принять порядка нескольких мет­ров, то, очевидно, таким путем может быть получена весьма значительная мощность. Современные английские проекты использования волновой энергии («утка» Солтера и «плот» Коккереля) основываются именно на этом прин­ципе. Второй способ — использование ударного давле­ния: волны ударяют в подвижную деталь волновой ма­шины и отдают ей свою кинетическую энергию. Этот принцип с успехом применялся в конце прошлого столе­тия в установках, использовавших энергию волн для на­качки воды. Не потерял он своего значения и в наши дни (правда, для маломощных установок). Третий путь — использование гидравлического тарана. По этому спо­собу была построена экспериментальная установка на станции Морского гидрофизического института АН СССР в Крыму. Ныне эта идея в большем масштабе реализу­ется на острове Маврикий и в других местах.

Различные виды энергии океана американский спе­циалист Д. Д. Айзеке предложил условно оценивать одной мерой — в метрах водяного столба 2. Эта величина на­зывается им плотностью потока, она характеризует сте­пень концентрации данного вида энергии. С помощью этого понятия удобно сравнивать между собой различные виды энергии в океане. Например, для теплового гради­ента (т. е. разности температур между теплым и холодным слоями) 20 °С плотность потока составляет 570 м водя­ного столба, ее напор — как в грандиозном водохрани­лище, подпертом плотиной высотой более полукилометра. А для градиента 12 °С плотность потока равна 210 м. Обе цифры (210 и 570 м) рассчитаны с учетом КПД тепло­вой машины, работающей по циклу Карно. Такую плот­ность потока в океане имеет еще только энергия градиента солености (осмоса) — 240 м. Другие виды энергии океана имеют значительно меньшие значения плотности потока. Так, для ветровых волн она составляет 1,5 м, а для океан­ских течений —лишь 0,05 м. Но, как сказал Д. Д. Ай­зеке, еще остаются неоткрытыми совершенно новые прин­ципы, простые и сложные, обнаружив которые, можно использовать ресурсы океана, связанные с энергией, для блага человечества.

§2.2ПРЕОБРАЗОВАНИЕ ТЕПЛОВОЙ ЭНЕРГИИ ОКЕАНА

ИДЕЯ Д'АРСОНВАЛЯ И РАБОТЫ КЛОДА

В 20-е годы нашего века многие журналы мира обошел странный рисунок (рис. 27): из-под киля судна в глубину уходила труба больше самого судна. Столь необычная труба понадобилась французскому ученому Жоржу Клоду . для подъема из глубин океана холодной воды. Клод в те годы начал экспериментальные работы по использованию тепла океана для получения электрической энергии. \ Но чтобы извлечь энергию из теплой воды, одновременно необходима и холодная. Теплой воды сколько угодно на поверхности океана в тропиках, а холодная вода (4—5 °С) есть только на больших глубинах океана — около 1 км. Для ее получения оттуда и понадобилась длинная труба, которая оказалась самой уязвимой частью энерге­тической установки и отломилась во время шторма, а судно потерпело аварию.

Это была уже не первая попытка Клода использовать тепло океана для выработки электрической энергии'. Перед опытом: с трубой на судне он испытывал энергети­ческую установку на берегу океана (Атлантического). Но чтобы с берега достать холодную воду, потребовалась труба длиной около 1,8 км (по другим данным, 2,5 км). Потери напора в длинной трубе были так велики, что на них шла значительная часть мощности, которую могла выработать установка. Слишком длинная труба практи­чески не позволяла реализовать прекрасную идею. Длину трубы можно было бы значительно сократить, если смонти­ровать установку не на берегу, а на судне, трубу же опустить прямо с судна в глубину. Что и было сделано. Однако конструкция не выдержала первого шторма.