vcyT за год.
Средние значения скоростей в рассматриваемом районе, как правило, определяют по данным наблюдений на метеостанциях, а в ряде случаев — по материалам анеморазведок. В зависимости от категории и класса метеостанции, требований и особенностей объектов, находящихся поблизости от обслуживающих станций, метеорологические сроки наблюдений за скоростью ветра устанавливаются различные. Чаще всего приняты интервалы в 3, 4 или 6 ч с измерениями в определенное время, но на части метеостанций и специальных объектов ведут непрерывную запись скоростей (например, на Московской и других телебашнях, при некоторых аэропортах, в зонах с аномальным ветровым режимом и т.д.) или проводят ежечасные наблюдения.
Класс открытости метеостанции, степень защищенности (затененности препятствиями) анемометра учитывают при измерениях скорости ветра различных направлений (по румбам). Для классификации станций пользуются специальной методикой, предложенной В.Ю. Милевским, которая изложена в литературе по метеорологии. Методика обеспечивает возможность лучшей сопоставимости наблюдений, их репрезентативности для обслуживаемой зоны. На метеостанциях получают и накапливают достаточно точные для практики сведения о среднепериодных скоростях, которые в сравнении с данными, вычисленными по среднечасовым скоростям, дают относительно небольшую погрешность. Надо иметь в виду, что на показания анемометров влияют их расположение, макро- и микрорельеф местности, класс открытости метеостанции. Это следует учитывать при пересчете скоростей для определенной высоты и для каждого конкретного района, где предполагается установка ветроагрегата, даже если он расположен сравнительно недалеко от станции.
Средние скорости ветра меняются в различное время суток, разные месяцы и сезоны. Поэтому рассматривают суточный, месячный и сезонный ход скоростей, определяющий общую тенденцию их изменения в указанные периоды и оценивающий макроструктуру воздушного потока. Предельные значения скоростей ветра, данные об его интенсивности и микроструктура потока в различных точках его поперечного сечения и продольного вектора за относительно короткие интервалы времени являются важными режимными характеристиками ветра, используемыми в расчетах на прочность и долговечность агрегатов, при проектировании механизмов привода, систем регулирования и ориентации, схем совместного использования с другими установками и др.
Важной характеристикой является вертикальный профиль ветра, т.е. изменения его скорости по высоте в приземном слое. Влияние земной поверхности на скорость и направление ветра уменьшается по мере увеличения высоты. Поэтому скорость обычно возрастает, а порывистость и ускорения потока снижаются. Градиент скоростей летом, как правило, меньше, чем зимой, когда вертикальный перепад температур относительно небольшой. При адиабатическом градиенте температуры в нижних слоях атмосферы вертикальный профиль ветра v (К) аппроксимируется зависимостями вида
Важнейшее значение для надежности и долговечности ветроэнергетической установки имеют значения предельных скоростей ветра в зоне. \ Они определяют принимаемые расчетные нормативы при проектировании узлов и конструкций установки на прочность, параметры регуляторов, аэродинамические характеристики лопастей. При определении расчетных значений максимальных скоростей ветра различной вероятности, пользуются формулой Л.С. Гандина и Л.Е. Анапольской
где F(x) — вероятность того, что v превзойдет заданное значение х; (1, у - параметры уравнения, зависящие от характеристик зоны и режимов ветра; е — основание натурального логарифма.
Для оценки относительной скорости ветра в метеорологической практике используют коэффициент, %,
где -
— измеренная в определенный час скорость; v - средняя скорость за выбранный промежуток времени; vmax>vmin — экстремальные значения скорости ветра за этот период.Линии, соединяющие точки на карте, имеющие равные величины К', называются изоплетами.
Энергия Е воздушного потока с поперечным сечением F, Дж:
E = mv2/2.
Секундная масса т воздуха, протекающая со скоростью v через это сечение, кг/с:
m =pFv.
Подставляя E в m, получаем, Дж/с,
E = pv3F/2,
где р — плотность воздуха, равная для нормальных условий 1,23 кг/м3 (при t = 15 °С и р = 101,3 кПа или 760мм рт. ст.).
Таким образом, энергия ветра изменяется пропорционально кубу его скорости. Ветроколесо может преобразовать в полезную работу только часть этой энергии, которая оценивается коэффициентом использования энергии ветра £. Для идеального крыльчатого ветроколеса максимально достижимая величина £, рассчитанная по классической теории Н.Е. Жуковского и теории Г.Х. Сабинина, равна соответственно 0,593 и 0,687. Современные ветродвигатели при работе в номинальном (расчетном) режиме преобразуют в механическую работу не более 45 — 48% кинетической энергии ветрового потока, что вызвано различными потерями и другими причинами. Кинетическая энергия, которой потенциально обладает ветровой поток, зависит от скорости ветра v, температуры воздуха tи атмосферного давления р. Удельная мощность (секундная энергия), которая заключена в потоке, имеющем поперечное сечение, равное 1 м2, при t = +15°С и p= 101,3 кПа округленно составляет:
Скорость ветра, м/с....... 4 6 8 10 14 18 22
Мощность потока, кВт/м2 ... 0,04 0,13 0,31 0,61 1,67 3,6 6,25
По отношению к этим условиям изменение температуры воздуха от + 15 до 0 °С повышает мощность потока примерно на 6%, а при t = +30 °С энергия, заключенная в потоке, наоборот, снижается на 5%. При постоянной температуре воздуха 0°С изменение атмосферного давления, например, от 103,7 до 97,3 кПа (от 770 до 730 мм рт. ст.) снижает энергию потока примерно на 6%.
Воздушный поток, как и любое движущееся тело, обладает энергией движения, или запасом кинетической энергии. Последняя с помощью ветроколеса или другого рабочего органа преобразуется в механическую энергию. В зависимости от назначения ветроустановки механическая энергия с помощью исполнительных механизмов (генератора, компрессора, электролизера и т.д.) может быть преобразована в электрическую, тепловую или механическую энергию, а также в энергию сжатого воздуха. Согласно (3.7) — (3.9) секундная кинетическая энергия Е воздушного потока с площадью поперечного сечения F, имеющего массу т, плот-яость р и скорость v, равна pFv3/2. Замечая, что F - ПR2, и сделав соответствующие подстановки, получим, Н*м/с,
1 - вертикальная ось; 2 - горизонтальные планки; 3 - поворачивающиеся лопасти; 4 -ось лопасти
Следовательно, секундная энергия, или мощность воздушного потока, пропорциональна его плотности, плошали поперечного сечения и кубу скорости.
Часть полной энергии потока, воспринятой ветроколесом, которую ветродвигатель преобразует в механическую энергию, оценивается коэффициентом использования энергии ветра
который зависит от типа ветродвигателя и режима его работы.
Секундная работа или мощность, Н-м/с, развиваемая ветроколесом, определяется по формуле
Р= pv3F
Так как плотность воздуха очень мала (в 800 раз меньше плотности воды), то для получения относительно больших мощностей приходится применять ветродвигатели со значительной поверхностью ветроколеса. Постоянные изменения скорости v приводят к тому, что мощность, развиваемая двигателем, изменяется в очень больших пределах: от нуля во время штиля до величины, в десятки раз превосходящей установленную мощность, на которую рассчитывают ветродвигатель при расчетной скорости ветра. Для преобразования кинетической энергии воздушного потока в механическую энергию могут быть использованы ветродвигатели различных типов. Первыми (примерно в XVIII в. до н.э.) появились, по-видимому в Персии и Китае, двигатели с вертикальной осью вращения, как наиболее простые. Они получили название карусельных. Чтобы получить вращающий момент на оси, лопасти, движущиеся навстречу ветру, должны быть прикрыты шторкой (рис. 4.3) или поворачиваться ребром к потоку (рис. 4.4). Для этого они укрепляются на оси с помощью шарниров и на активном участке пути (в зоне А) фиксируются в нужном положении специальными устройствами (упорами).
Разновидностью двигателей карусельного типа являются роторные двигатели, у которых рабочие поверхности выполнены не плоскими, а криволинейными (рис. 4.5). Поэтому давление на них при движении по направлению действия потока и против него разное, что и обусловливает возникновение вращающего момента. Двигатели с плоскими рабочими поверхностями, вращающимися относительно горизонтальной оси, получили название барабанных (рис. 4.6).