Что же касается второй гармоники в токе, то она порождает вторую гармонику в электронной концентрации и, следовательно, в электрическом поле. Последнее же благодаря электромеханической связи играет роль вынужденной силы, которая создает вторую гармонику в упругом смещении.
Каково отношение амплитуд второй и основной гармоник? Эго отношение можно считать мерой нелинейности. Его легко оценить для случаев, когда картина распределения электронов в поле волны мало отличается от статической. Тогда относительное изменение концентрации в поле волны (n - n0)/n0 должно быть порядка eφ/kT. Ведь именно таково отношение глубины «потенциальных ям», созданных звуковой волной, к характерной энергии электрона. Соответственно вынуждающая сила будет ~ χeφ/kT по сравнению с силой, имеющей частоту основной гармоники. Однако важна не только величина силы, но и то, насколько она .попадает «в резонанс» с собственными волнами системы. А именно амплитуда гармоники определяется отношением амплитуды вынуждающей силы χeφ/kT к разности 1/ ω – 1/ ω2, которая тоже порядка χ (ω2 – скорость свободной звуковой волны с частотой 2ω). Аналогичная ситуация возникает при раскачке маятника внешней силой—амплитуда колебаний пропорциональна не просто амплитуде вынуждающей силы, а отношению силы к расстройке относительно частоты собственных колебаний. В результате
u2/u ~ eφ/kT (8)
Таким образом видно, что безразмерным параметром, определяющим роль нелинейных эффектов, является отношение eφ/kT. Оценка (8) применима, пока
u2/u « 1. При таком условии амплитуда второй гармоники сравнительно мала. Амплитуды высших гармонии еще меньше: амплитуда n-й гармоники пропорциональна (eφ/kT)2. Следовательно, форма волны остается почти синусоидальной.
Что же происходит, когда eφ ≥ kT? Форма волны в этом случае заметно отличается от синусоидальной, а амплитуды большого числа высших гармоник имеют тот же порядок, что и основная.
Особенно сильно проявляются нелинейные эффекты при eφ » kT. В этом случае все электроны расположены на дне потенциальных ям, образованных пространственно-периодическим распределением пьезоэлектрического потенциала (рис. 8).
Электрические свойства пьезополупроводника оказываются в таком состоянии резко анизотропными. Средний ток в направлении распространения звука в широком интервале полей не зависит от поля и равен en0ω (все электроны проводимости увлекаются волной). В то же время проводимость полупроводника в поперечном направлении почти не изменяется в присутствии звука.
Рассмотрим теперь основной вопрос, ради которого мы начали обсуждать нелинейные эффекты,— как будет вести себя коэффициент усиления в случае больших звуковых амплитуд.
Согласно линейной теории усиления звука, его амплитуда, как уже говорилось, возрастает беспредельно. Ясно, что реально усиление беспредельным быть не может, так как в конце концов око бы вызвало разрушение кристалла. В действительности, однако, этого обычно не происходит - начиная с некоторого значения амплитуды коэффициент усиления начинает убывать и обращается в нуль. При этом в кристалле образуется так .называемая стационарная волна — периодическая волна несинусоидальной формы, которая распространяется, не усиливаясь и не затухая. . Как правило, одних только электронных эффектов для образования стационарных волн недостаточно. Эти (волны могут возникнуть лишь в результате совместно-то действия решеточного поглощения и электронного усиления. Если при определении значений дрейфового ноля звук малой амплитуды усиливается, значит электронный коэффициент усиления превышает коэффициент решеточного поглощения. Но эти два коэффициента по-разному зависят от амплитуды: в большинстве представляющих интерес случаев электронное усиление убывает, а решеточное поглощение возрастает.
На первый взгляд может показаться, что поскольку мы не учитываем нелинейные упругие свойства кристалла, в теории не должна возникать нелинейность решеточного поглощения. Однако это не так. Решеточное поглощение связано со взаимодействием звуковой волны с тепловыми колебаниями решетки. Его можно описать, вводя в уравнения теории упругости эффективную силу, действующую на решетку. Структура этой силы аналогична структуре силы вязкого трения в жидкости — она пропорциональна третьей производной смещения по координате. В связи с этим основной вклад в решеточное поглощение дают области резкой зависимости смещения от координаты — области вблизи дна потенциальных ям, где электроны сильно взаимодействуют со звуком. С ростом амплитуды звука размер этих областей, как мы уже видели (см. рис. 8), уменьшается — излом становится более резким. Следовательно, решеточное поглощение возрастает. При некоторой амплитуде электронное усиление сравнивается с решеточным поглощением — это и есть амплитуда стационарной волны.
Исследование образования стационарных волн и зависимости их амплитуды от электрического поля и других параметров позволяют ответить на важный вопрос» .какое максимальное усиление звука можно получить описанным путем?.
4. УСИЛЕНИЕ АКУСТИЧЕСКИХ ШУМОВ И СВЯЗАННЫЕ С ЭТИМ ЯВЛЕНИЯ
Уже в первых опытах по усилению звуковых сигналов наблюдалось также усиление звуковых шумов, т. е. тепловых звуковых флуктуаций, всегда существующих в кристалле.: В ходе эксперимента было видно, как их интенсивность нарастает и в конце концов 'начинает препятствовать усилению полезного сигнала. Таким образом, вначале шумы возникли как паразитный эффект, с которым надо было бороться. Впоследствии, однако, оказалось, что их изучение представляет самостоятельный физический интерес, и немалый. А сейчас, пожалуй, этому вопросу посвящено большее число работ, чем любой другой проблеме, связанной с усилением звука в полупроводниках.
Проблема усиления шумов в пьезополупроводниках очень сложна и к настоящему времени полностью не решена. Поэтому здесь мы обсудим лишь главные особенности усиления шума и основные возникающие вопросы.
Как происходит усиление шума? Мы видели, что вследствие анизотропии пьезоэлектрического взаимодействия и скорости звука коэффициент усиления звука зависит от направления его распространения. Обычно (хотя и не всегда) опыт ставят так, что усиление максимально, когда звук распространяется в направлении дрейфа электронов (звук, распространяющийся под углом, усиливается меньше). Только такую геометрию мы здесь и будем обсуждать.
Мы видели, что коэффициент усиления звука имеет максимум на частоте ω0, которая пропорциональна √ n0
Интенсивность шумов растет по мере удаления от края кристалла. Быстрее всего нарастает интенсивность тех звуковых волн, которые распространяются вдоль направления дрейфа и имеют частоту о),„. Поэтому по мере удаления от края кристалла и угловое и частотное распределения интенсивности шумов обостряются. .Спектр акустических шумов в разных точках кристалла схематически изображен на рис. 12.
Таким образом, шумы усиливаются в очень узком угловом и частотном интервале. Однако в этом интервале общее усиление чрезвычайно велико. Так в одном из опытов оно на длине кристалла составляло 108.
В процессе усиления интенсивность шумов возрастает настолько, что их уже нельзя считать независимы. ми. Возникает состояние, до некоторой степени напоминающее гидродинамическую турбулентность, В этом состоянии движение имеет беспорядочный, хаотический характер, и большую роль играет взаимодействие отдельных шумовых компонент.
Что же происходит в таком состоянии? По какому закону растет интенсивность шумов в пространстве. Да и растет ли она? Каков спектральный состав шу'. мо.в? Есть ли максимум вблизи одной частоты, а если есть, то вблизи какой? И как формируется это состояние, какие взаимодействия играют в нем главную роль?
На большинство этих вопросов сейчас не существует однозначного ответа. Но кое-что все-таки уже известно, и мы об этом сейчас расскажем.
Оказалось, что определяющую роль в формировании акустического турбулентного состояния, как правило, играют коллективные движения электронов полу. проводника. Что же это такое? Хорошо известен один тип таких коллективных движений — плазменные колебания. Это колебания электронной плотности, период которых намного меньше времени свободного пробега электронов проводимости. Между тем со звуковыми шумами могут взаимодействовать только медленные движения с характерным временем, сравнимым с период дом звука (т. е. значительно превышающим время свободного пробега электронов проводимости). Какие это движения?
Представим себе, что в некоторой области полупроводника возник сгусток электронов (электронная концентрация немного превышает среднюю). Этот сгусток будет рассасываться как из-за диффузии электронов так и из-за расталкивания кулоновскими силами. Таким образом, это не колебательное, а периодическое, чисто релаксационное движение. И в полупроводнике возможны процессы, при которых сливаются две акустические волны л возникает не третья волна, а такое быстрозатухающее движение.
Важно, что процессы с участием движений электронной плотности происходят, вообще говоря, чаще других возможных процессов, т. е. именно они преобладают в условиях акустической турбулентности. В результате таких процессов образуется своеобразный «фон» движений электронной концентрации, рождающихся при слиянии усиленных шумовых компонент и ^быстро затухающих. Эти движения изменяют макроскопические (средние) свойства среды и, в частности, коэффициент усиления шумов — возникает добавка к коэффициенту усиления, пропорциональная интенсивности шума. В результате усиление шума становится нелинейным.