Смекни!
smekni.com

Акустические свойства полупроводников (стр. 3 из 5)

До сих пор мы в наших рассуждениях не учитыва­ли поглощения звука кристаллической решеткой. Что­бы его учесть, нужно к выражению для коэффициента электронного поглощения звука добавить коэффициент решеточного поглощения. В результате значение коэф­фициента поглощения оказывается больше, а коэф­фициента усиления — меньше, .чем в отсутствие реше­точных эффектов. Полный коэффициент усиления об­ращается в нуль не при каком-нибудь одном, а при двух значениях дрейфовой скорости — Vl и Vll на рис. 4.

Оценим коэффициент усиления в каком-нибудь ти­пичном случае. Обратимся с этой целью к примеру, рассмотренному на стр. 16. При (Vω)/ω)== 0,l мы по­лучаем, что Г~5 см-1. Если увеличить дрейфовую ско­рость и рассмотреть случай {Vω)/ω = 1, то Г~30 см-1. Это значит, что интенсивность звука возрастает в е раз на расстоянии в 1/30~0,03 см. При дальнейшем возра­стании дрейфовой скорости коэффициент усиления на­чинает убывать.

Приведем в качестве примера экспериментальные зависимости коэффициента поглощения (усиления) от электрическою поля, наблюдавшиеся в кристалле CdS (рис. 5). Как уже говорилось, CdS—фотопроводник. Начало отсчета затухания на рис. 5 соответствует за­туханию в неосвещенном образце. При изменении уров­ня освещенности изменяется проводимость кристалла, а следовательно, и т. Так получены кривые В и С, соответствующие частоте 45 МГц и значениям (от 4,2 и 4,8 соответственно. Кривая А получена на частоте 15 МГц; <от=0,83. Из рисунка видно, что при значении электрического поля ~750 В/см коэффициент поглощения из­меняет знак—поглощение сменяется усилением.

Обратим внимание на то, что теория дает очень большие значения коэффициента усиления. Усиление звука в пьезополупроводниках наблюдалось в целом ряде экспериментальных работ. В некоторых случаях существующая теория удовлетворительно описывала данные опыта. Иногда, однако, усиление, наблюдавшее­ся экспериментально, оказывалось гораздо меньше тео­ретического. Такое расхождение, возможно, связано с решеточным поглощением звука и некоторыми другими явлениями (которые не учтены в этом простейшем ва­рианте теории).

А может быть, дело здесь в следующем. В простей­шей теории, описанной выше, предполагается, что изме­нение концентрации электронов и электрического поля пропорционально деформации решетки в звуковой вол­не (линейная теория). При больших амплитудах зву­ковой волны линейный закон становится непримени­мым — в таком случае говорят, что имеют место нелинейные эффекты. В процессе усиления звука его ин­тенсивность может возрасти на много порядков, поэто­му такие эффекты могут быть важны. О нелинейных эффектах речь пойдет ниже, и мы увидим, что они могут существенно изменить картину усиления звука.

При приложении к пьезополупроводнику электриче­ского поля изменяется не только поглощение. Изменяя сдвиг фаз между волнами деформации и пьезоэлект­рического поля, внешнее электрическое поле изменяет л скорость звука.

Отметим, что скорость звука зависит не только от величины, но и от направления электрического поля по отношению к направлению распространения звука. Соответственно скорости волн, распространяющихся вдоль и навстречу полю, различны. Это обстоятельство по­лезно иметь в виду; мы вспомним о нем в следующем разделе.

3. НЕЛИНЕЙНЫЕ ЭФФЕКТЫ ПРИ УСИЛЕНИИ ЗВУКА

Теория поглощения и усиления звука, о ко­торой мы рассказали, применима лишь в случае доста­точно малых амплитуд, так как она представляет собой линейную теорию. Основные результаты линейной тео­рии, как мы видели, таковы:

1) если на поверхности кристалла создать периоди­ческое упругое смещение, гармонически меняющееся со временем с частотой (о, то в кристалле будет распространяться звуковая волна, упругое смещение в которой будет изменяться по тому же закону;

2) интенсивность звука убывают (или нарастает в пространстве по экспоненциальному закону;

3) скорость звука есть постоянная величина, не за­висящая от его амплитуды.

В процессе усиления звука его интенсивность может возрасти на много порядков, так что начинают играть роль нелинейные явления. При этом возникает целый ряд новых эффектов. Происходит генерация второй и более высоких гармоник (а в ряде случаев и субгар­моник, частоты которых суть доли частоты м). Интен­сивность звука нарастает не экспоненциально, а по более сложному закону. Иными словами, коэффициент усиления начинает зависеть от интенсивности звука.

Наконец, при распространении интенсивного звука в кристалле возникает заметный звукоэлектрический ток. Звукоэлектрический эффект является простейшим нелинейным эффектом и уже давно исследуется теоре­тически и экспериментально. Мы обсудим этот эффект в специальном разделе.

Нужно сказать, что нелинейные эффекты могут наб­людаться не только при усилении звука. В настоящее время умеют генерировать звук такой интенсивности, .что нелинейные явления могут быть заметны уже в ре­жиме поглощения. При усилении, однако, они проявляются более ярко. Кроме того, учет их при усилении имеет принципиальный характер, так как именно они дол­жны рано или поздно ограничить усиление. Поэтому в данном разделе мы будем обсуждать случай усиления звука.

Если линейная теория усиления звука, которую мы рассматривали выше, сравнительно проста, то нелинейная теория гораздо сложнее. Поэтому здесь мы лишь качественно укажем, какие физические процессы ответ­ственны за нелинейные взаимодействия, и приведем ос­новные результаты нелинейной теории. Следует отме­тить, что нелинейная теория усиления звука еще дале­ка от своего завершения; существует ряд наблюдавших­ся на опыте явлений, которые пока не нашли объясне­ния. С другой стороны, некоторые предсказания нели­нейной теории еще ждут своей экспериментальной про­верки.

Вопрос о нелинейных эффектах является чрезвычай­но важным и с практической точки зрения, поскольку почти во всех акустоэлектронных системах работаю­щих в режиме усиления, эти эффекты проявляются. Кроме того, изучение нелинейного взаимодействия поз­волило узнать много нового о неравновесных процес­сах в полупроводниках. Поэтому в настоящее время ис­следование нелинейных акустических явлений идет широким фронтом.

Какого происхождения нелинейные взаимодейст­вия в пьезоэлектрических полупроводниках?

В диэлектрике единственный источник таких взаи­модействий — нелинейность упругих свойств, которая проявляется в отклонении от закона Гука. Эта нели­нейность хорошо изучена. Она, например, приводит к возникновению высших гармоник и может вызвать об­разование волн с резкими фронтами. Такие волны по­добны волнам в воздухе, идущим от области взрыва, и называются ударными.

В пьезоэлектрических полупроводниках обычно го­раздо важнее другие нелинейные взаимодействия, свя­занные с электронами проводимости. Таких взаимодей­ствий можно указать несколько. Известно, что если приложить к полупроводнику электрическое поле, то потечет ток, плотность которого этому полю пропорциональна. Так дело обстоит, ес­ли поле не очень велико. Но для сильных полей про­порциональность нарушается. В таких случаях гово­рят, что наблюдаются отклонения от закона Ома. Поле, в котором начинают проявляться эти отклонения, зави­сит от температуры, и при низких температурах роль отклонений от закона Ома особенно важна. Однако при комнатной температуре они обычно несущественны. Нас же будет интересовать именно эта область темпе­ратур, поскольку при комнатных температурах выпол­нено наибольшее число экспериментов. Поэтому меха­низма нелинейности, связанного с отклонениями от за­кона Ома, мы рассматривать не будем.

Существует специфическое нелинейное взаимодействие в полупроводниках с примесными центрами, которые могут захватывать электроны проводимости, играя для них роль своеобразных «ловушек». Оно свя­зано с тем, что в таких полупроводниках отношение концентраций свободных электронов и захваченных в ловушки само зависит от полной электронной концент­рации.

Наконец, возможна так называемая концентраци­онная нелинейность. В ряде интересных случаев глав­ная роль принадлежит именно ей, поэтому о ней имеет смысл рассказать подробнее.

Мы уже говорили, что пьезоэлектрический потенци­ал, создаваемый звуковой волной, вызывает простран­ственное перераспределение электронного заряда, так что локальная электронная концентрация n отличает­ся от средней концентрации n0. Вследствие этого и электропроводность в данной точке σ = enμ отличается от средней электропроводности σ = en0μ.. Поскольку n` = n - n0 зависит от амплитуды переменного электри­ческого поля, то возникает нелинейная связь между плотностью переменного тока проводимости j = σE и напряженностью переменного электрического поля Е.

Обсудим качественно, к каким эффектам приводит такая нелинейная связь. Предположим сначала, что интенсивность звука, который мы возбуждаем, доста­точно мала (смысл слов «достаточно мала» мы выяс­ним немного позже). Звуковая волна частоты ω распро­страняется от поверхности в глубь кристалла, затухая или усиливаясь, в зависимости от величины приложен­ного постоянного электрического поля. Переменное пьезоэлектрическое поле, сопровождающее волну, вы­зывает пространственное перераспределение электро­нов. Таким образом, в выражении для плотности тока появляются нелинейные члены. Они содержат вторую и нулевую гармоники. Последняя, т. е. постоянное сла­гаемое, представляет собой не что иное, как уже зна­комый нам звукоэлектрический ток.