Опираясь на представления об электропроводности коллоидных систем, получено выражение для удельной проводимости магнитной жидкости, представленное формулой (1):
, (1)где
удельная проводимость дисперсионной среды, – структурный коэффициент проводящей частицы, окруженной диэлектрической оболочкой в дисперсионной среде, – выражение, определяющее поверхностную проводимость коллоидного раствора. В (1) введено обозначение – параметр, зависящий от диэлектрических свойств дисперсионной среды ( ) и слоя олеиновой кислоты ( ).Используя (1) и определив опытным путем удельную проводимость магнитной жидкости, можно подсчитать значение плотности поверхностного заряда частиц магнетита и поверхностной проводимости магнитной жидкости. Для выбранного нами образца магнитной жидкости значения этих величин оказались равными соответственно
и .Как уже отмечалось, ожидаемого существенного влияния однородного магнитного поля на электропроводность магнитных жидкостей до настоящего времени не обнаружено. Однако положение может существенно измениться в случае добавления в магнитную жидкость дисперсного наполнителя – немагнитных частиц с достаточно большой электропроводностью. В настоящей работе приводятся результаты экспериментального исследования электропроводности магнитной жидкости с немагнитным наполнителем в однородном магнитном поле.
При воздействии магнитного поля на магнитную жидкость, содержащую немагнитные частицы, последние могут рассматриваться как «диамагнитные» частицы, имеющие магнитные моменты, направленные противоположно полю. Вследствие взаимодействия магнитных моментов происходит объединение немагнитных частиц в цепочечные структуры. Взаимодействие частиц, принадлежащих различным цепочкам приводит к объединению коротких цепей в более длинные, а при их высокой концентрации – к боковому слипанию и образованию более крупных структур. Таким образом, воздействие магнитного поля на магнитную жидкость с мелкодисперсным немагнитным наполнителем приводит к структурной анизотропии, о чем свидетельствует появление анизотропного рассеяния света.
Исследование электропроводности магнитных жидкостей с немагнитным наполнителем различной формы (сферической, цилиндрической) и наполнителя с высокой и низкой проводимостью (графитовая и эбонитовая пыль), выявило характерную зависимость её от величины и направления внешнего однородного магнитного поля, представленную на рисунках 4, 5, 6, 7. Здесь на рисунке 4 представлена зависимость сопротивления магнитной жидкости с немагнитным наполнителем сферической формы, на рисунке 5 – цилиндрической формы, на рисунке 6 – наполнителя с низкой проводимостью (эбонитовая пыль), на рисунке 7 – наполнителя с высокой проводимостью (графитовая пыль). Как видно из рисунков, сопротивление слоя таких композиционных магнитных жидкостей уменьшается, когда направления магнитного поля и тока совпадают, и увеличивается при действии поля в случае его направления перпендикулярно линиям тока (кривые 1 и 2 соответственно). Разность между значениями измеренных таким образом сопротивлений зависит от объемного содержания немагнитных частиц, при этом в случае проводящих (графитовых) частиц она достигает более высоких значений (20 %), чем для непроводящих частиц из эбонита (10 %).
В результате проведенных исследований было установлено, что электрическое сопротивление магнитной жидкости при добавлении в неё дисперсных проводящих частиц увеличивается пропорционально их объемному содержанию (рис.8, кривая 1).
При этом разность между значениями сопротивления в случае, когда электрическое и магнитное поля перпендикулярны и сонаправленны, определяется величиной объемного содержания немагнитных проводящих включений и может достигать 20 % (рис.8, кривая 2).Теоретическое рассмотрение электропроводности суспензии с частицами различной формы и различными диэлектрическими параметрами достаточно подробно проведено Духиным С.С. В частности, для суспензий с диэлектрическими частицами в пренебрежении поверхностной проводимостью, связанной с двойным электрическим слоем, удельная проводимость
определяется в виде: , (2)где
– удельная электрическая проводимость дисперсионной среды, F – коэффициент структурного сопротивления, являющийся функцией объемной концентрации непроводящих частиц: . (3)В случае эллипсоидальной частицы, ориентированной осью i по полю,
, (4)где Аi – фактор деполяризации эллипсоида в направлении оси i.
Происходящее под воздействием магнитного поля объединение взвешенных в магнитной жидкости частиц в цепочки должно приводить к изменению фактора деполяризации, и, в соответствии с (2) – (4) к изменению проводимости суспензии, что и наблюдается в эксперименте. Проведенный анализ фотографий цепочечных структур, сформированных магнитным полем показал, что среднее значение отношения b/a при максимальной напряженности магнитного поля достигаемого в экспериментальных исследованиях, имеет значение около 1/6. В этом случае, согласно расчетам по формулам (2) – (4) относительное изменение сопротивления, измеренного вдоль и перпендикулярно магнитному полю отнесенное к сопротивлению ячейки в отсутствии магнитного поля должно составлять 14 %. При этом экспериментально определенные значения относительного изменения сопротивления ячейки с магнитной жидкостью с немагнитным наполнителем, при одном и том же объемном содержании включений, имели следующие значения: для наполнителя сферической формы 12 %, для наполнителя цилиндрической формы (в магнитном поле с
Тл) – 6 %, для эбонитового наполнителя 9 %, для графитового наполнителя достигает 20 %.Некоторое количественное несоответствие с экспериментально полученными результатами может быть связано с оседанием отдельных наиболее крупных частиц и понижением в связи с этим концентрации немагнитных частиц в объеме образца. Другой причиной этого может быть полидисперсность реальных суспензий, строгий учет которой при построении теории затруднителен.Таким образом, проведенные исследования позволяют сделать вывод, что введение немагнитной дисперсной фазы в магнитную жидкость дает возможность управлять ее электрическими свойствами с помощью воздействия относительно малых магнитных полей. Благодаря этому такие композиционные магнитные жидкости могут найти применение в областях, использующих материалы с заданными управляемыми параметрами.