Смекни!
smekni.com

Межпредметные связи физики и математики (стр. 5 из 6)

На наш взгляд, в IX классе достаточно разобрать понятие производной многочлена. А дальнейшее развитие понятий производной и интеграла с при­влечением различных функций целесообразно продолжить в Х и XI классах на уроках физики и математики.

«При реализации межпредметных связей предпочтение следует отдать скорее наглядности физики, чем строгости математических доказательств. По­этому на уроках математики, например, производную сумму вводить при по­мощи закона сложения скоростей; при выводе формулы производной функции, основанном на использовании метода неполной индукции, математические вы­кладки подтверждаются примерами из физики; понятия предельного перехода формируется на основе физического эксперимента, во время которого определяются значения средних скоростей движения тела за уменьшающиеся проме­жутки времени. Рассмотрение физического примера — движение тела, брошен­ного вертикально вверх, - облегчает задачу формирования понятий возрастаю­щей и убывающей функций, позволяет мотивированно ввести понятие второй производной и на этой основе получить правила определения выпуклости гра­фика. Что касается понятий «первообразная» (неопределенный интеграл) и «интеграл» (определенный интервал), то их формирование целесообразно про­водить с широким использованием физических примеров, начиная с их опреде­ления, получения основного свойства первообразных, геометрического образа первообразной и интеграла и заканчивая правилами интегрирования многочле­на». [13,51].

Физика в формировании понятий математического анализа играет не пас­сивную роль средства наглядности, а дает возможность представить предель­ный переход в динамике и осмыслить понятие «бесконечно малой величины».

Для курса физики знание производной и интеграла открывает перспекти­ву в плане возможности более строгого определения ряда физических величин;

точной записи второго закона Ньютона, закон электромагнитной индукции, ЭДС индукции, возникающей в рамке, вращающейся в магнитном поле; упро­щение работ с графиками и, наконец, рассмотрение видов равновесия тел не только с позиции действия силы, но и с энергетической точки зрения. Знание учащимся производной и интеграла позволяет выработать у них общий подход к определению физических величин и решению графических задач физического содержания.

С этой целью можно, например, использовать алгоритмические схемы, являющиеся общими для определения математических и физических функцио­нальных зависимостей. Так, схема общего подхода к определению физических понятий с помощью производной может быть следующей:

1. Убедившись в возможности применения понятия производной, запи­шите функциональную зависимость в виде у=f(х).

2. Найдите отношение приращения функции к приращению аргумента, то есть среднюю скорость изменения функции:

.

3. Осуществите предельный переход над функцией

при условии
, записав выражение производной:

.

4. Сформулируйте определение физической величины по схеме: название физического понятия, определенного как производная от данной функции; на­звание функции; название аргумента. Например, мгновенная скорость движе­ния тела есть производная от координаты тела по времени.

Для определения физического понятия с помощью интеграла можно из­брать следующую схему действия:

1. Убедитесь в возможности применения понятия «интеграл» в данной ситуации: приблизительное значение искомой физической величины может быть представлено как сумма выражений

, где
- некоторое среднее значение функции на промежутке
; гра­фически эта сумма должна соответствовать значению площади ступенчатой фигуры, а при стремлении
к нулю площадь ступенчатой фигуры должна сводится к площади криволинейной трапеции.

2. Запишите искомую физическую величину как

.

3. Сформулируйте определение найденной физической величины по схе­ме: название физической величины, определяемой как интеграл от данной функции; название функции; название аргумента.

В большинстве случаев схема записи интеграла может быть иной. По­скольку интегрирование — это действие, обратное дифференцированию, при­меним следующий порядок действий:

1. Запишите производную искомой функции по соответствующему аргументу, например: υ=dx/dt

2. Определите функцию, от которой была найдена производная, т. е. первооб­разную

.

3. Найдите изменение искомой функции при соответствующих значениях аргумента: t1 и t2, то есть интеграл

, после чего сформулируйте определение физической величины (см. выше п. 3).

Наличие двух подходов к определению физического понятия с помощью интеграла — это результат существования двух вариантов определения самого понятия «интеграл». Использование того или иного подхода к определению фи­зического понятия с помощью интеграла зависело от этапа работы над форми­рованием понятия «интеграл».

Опыт работы показал, что общий подход к исследованию графиков, фи­зических функциональных зависимостей создает благоприятные условия для формирования общих умений в работе с графиками на уроках физики и мате­матики.

Для преподавания физики большое значение имеет владение учащимися быстротой счета и вычислений, приближенными вычислениями, простейшими геометрическими построениями, умением строить графики по виду элементар­ных функций, выражающих физические закономерности, построение графиков на основе опытных данных и получение по кривым аналитического выражения функциональной зависимости.

Учащиеся должны понять, что абстрактные математические положения, относящиеся к функциональным зависимостям, переплетаются с конкретными физическими представлениями. «Единство абстрактного и конкретного, входя­щее в физическое знание проявляется через единство математических и физи­ческих представлений. В математике графики изучаются абстрактно, вне связи с конкретными процессами. При изучении физических явлений осуществляется их конкретизация. Весь курс физики насыщен графическими представлениями явлений, начиная с механики и кончая строением атома. В процессе изучения этого курса физики учащиеся подчеркивают эту конкретность в графических представлениях явлений».

В ходе преподавании физики и математики необходимо обращать внима­ние учащихся на то, что математика является мощным средством для обобще­ния физических понятий и законов. Во взаимоотношениях физики и математи­ки большое место занимает пересечение внутренних потребностей с развитием наук. Такое пересечение обычно приводит к важным открытиям как в матема­тике так и в физике. Математика представляет аппарат для выражения общих физических закономерностей и методы раскрытия новых физических явлений и фактов, а физика, в свою очередь, стимулирует развитие математики постанов­кой новых задач.

Таким образом, примеры осуществления межпредметной связи физики и математики можно было бы значительно увеличить. Учителя стремятся осуще­ствить эту связь между всеми предметами и совместных-усилиях добиться по­вышения уровня научной подготовки учащихся, роли обучения в формирова­нии у них научного мировоззрения.

ЗАКЛЮЧЕНИЕ

Выявление и последующее осуществление необходимых и важных для

раскрытия ведущих положений учебных тем межпредметных связей позволяет:

а) снизить вероятность субъективного подхода в определении межпред­метной емкости учебных тем;

б) сосредоточить внимание учителей и учащихся на узловых аспектах учебных предметов, которые играют важную роль в раскрытии ведущих идей наук;

в) осуществлять поэтапную организацию работы по установлению меж­предметных связей, постоянно усложняя познавательные задачи, расширяя по­ле действия творческой инициативы и познавательной самодеятельности школьников, применяя все многообразие дидактических средств для эффектив­ного осуществления многосторонних межпредметных связей;

г) формировать познавательные интересы учащихся средствами самых различных учебных предметов в их органическом единстве;

д) осуществлять творческое сотрудничество между учителями и учащи­мися;

е) изучать важнейшие мировоззренческие проблемы и вопросы совре­менности средствами различных предметов и наук в связи с жизнью.

В этом находит свое выражение главная линия межпредметных связей. Однако эти связи между отдельными предметами имеют свою специфику, ко­торая накладывает отпечаток на преподавание. Например, при изложении ма­тематики следует обратить внимание на совершенствование тех разделов учеб­ного курса, которые находят широкое применение в курсе физики. Реализация межпредметных связей способствует систематизации, а следовательно, глубине и прочности знаний, помогает дать ученикам целостную картину мира.