1,2 Элементы кинематики М Т Ур-е движ. , скорости.
Матерьяльной точкой называют тело, размерами и формам которого в данной задаче можно пренебреч. Любой вектор можно разложить по базису: r=ix+jy+kz модуль вектора
/r/=Öx2+y2+z2. Положение мат точки опр. r=r(t) или x(t) y(t) z(t) Траектория-совокупность последовательных положений мат. точки в пространстве при ее движении. Сумма длин всех участков траектории пройденного за промежуток времени – длина пути. Средняя скорость за пром времени Vср=êr/êt Средняя путевая скорость vср=êS/êt. Скоростью ( мгновенной скоростью)-
v= limêt-0vср= limêt-0 êr/êt =dr/dtv-производная радиуса- вектора по времени.Определение пройденого пути S= интеграл t до t0 vdt равномерное прямолинейное дв. S=vt си 1 м/с.
1.3 Ускорение матерьяльной точки Нормальное и тангациональное уск. Радиус кривизны траектории.
Средним ускорением точки в интервале времени t2-t1=êt наз. Вектор аср равный отношению вектора изменения скорости êv=v2-v1 к промежутку вр. êt за кот изменение произошло аср=êv/êt Мгновенным ускорение наз предел среднего уск при êt-0 а= limêt-0аср= limêt-0êv/êt=dv/dt= d2r/dt2a= limêt-0 dv1/dt + limêt-0 dv2/dt= at+anat танганцион. Изменение скорости по
величине, напрвлен по касательной тр. ан нормальное изменен. Скорости по направлению. Направлен по радиусу кривизны.at=dv/dtan=v2/RCi 1 m*c-2
1.4 Закон динамики Ньютона
Свойство всех тел сохранять неизмениым свое движение при отсутствии внешнего воздействия и стремиться сохранять сост движения наз. Инерцией. ПЕРВЫЙ ЗАКОНлюбое тело нах в сост покоя или равн. Движения пока внешнее силы не вызовут измене-
ние этого состояния. Масса – физ. Характеристика материи, явля-
ющейся выражением и мерой одновремено гравитационых свойств материи и ее инерционых свойств.
F=G*m1m2/r2(грав. Масса) Инерционая масса F=macи=1кг
1.5 Основной закон динамики материальной точки.
Сила – векторная величина, являющаяся мерой механиче-ского взаимодействия материальных тел K=mv Изменение количества дв. Равно импульсу действующей силы и происходит в напривле-
нии действия силы. DK=Fdt. F=dK/dt= d(mv)/dt cu- 1kg*m/c2
1.6 Внешние и внутрение силы . 3 закон Ньютона.
Действию всегда есть равное и против- ное противодействие, иначе взаимодействие двух тел равны между собой и напр. в противоположеные стороны.В лю- бой механической системе сумма всех внутрених тел = 0 Пусть на каждую мат точку действуют внутрение силы взаимодействия и внешние силы. åd(mivi)/dt=åFi вн+åFi вну åd(mivi)/dt=dåmivi/dt= dK/dt изменен. Импульса системы K=åmiviЗакон измен импульс сист dK/dt=Fвнеш
1.7 Поступательное движение твердого тела. Центр масс мех. Системы и закон его движения.
Абсолютно твердое тело- деформацией которого в условиях данной задачи можно пренебречь. Растояние точек при движении не изменяется и скорость их одинак. Центром инерции (масс) системы мат точек, радиус вектор Rc=åmiri/mCкорость центра инерции vc=drc/dt=1/mdåmiri/dt=1/måd(mir)i/dt=1/måmivi=K/m
Закон движения центра инерции мех сист. dK/dt=Fвнеш
dvc/dt=ac Точка приложеная силы тяжести тела (равнодейс силы тяжести всех частиц тела – центр тяжести телаrц т=1/mgåmgri=
=1/mgåmigiri=gi/mgåmiri=1/måmiri=rc (g вектор везде) плотность тела p=dm/dV Тело наз. Однородным если плотность во всех точках одинакова . масса такого тела m=pV неоднорд m=(интег по V )pdV средней плотностью неоднор тел=а p=m/V
1.8 Закон сохранения импульса и его связь с однор прос
Для замкнутой системы главный вектор Fвнеш=0 и K=åmivi= const При любых процессах происходящих в замкну-той системе, скорость ее центра инерции не измен.Vc=cons
1.9a Движение тела переменой массы ( ур Мещерского)
Нач момент t. Ракета имела массу M скоростьv нач импул.
K=Mv. За пром времени dt отделилась масса dM со скор С
Отн ракеты в результ. M-dMc+dv и импульс ракеты стал
K2=(M-dM)(v+dv)=Mv+Mdv-vdM-Mdv=Mv+Mdv-vdM
Импульс отработаных газов K3=dM(v+c) сумма K4=K2+K3
Изменение импульса dK=K4-K1=Mdv+cdM=Fdt
M(dv/dt)=F-mc – ур описывающее движение тела переменой массы – ур Мещерского. mc – реактивная сила знак «-« озн. направлен Противоп. Вектору скорости.
1.9 b Абсолютно неупругий удар шаров.
Столкновение тел при котором за весьма малый промежут. Времени происходит значит измен скоростей тел наз- удар
Удар наз абсол неупругим если после удара теле движутся как одно целое. При ударе двух шаров массы m1m2 ск.v1v2
Зак сохр импульса m1v1+m2v2=(m1+m2)uu= m1v1+m2v2/
/m1+m2 если скор. После удара u=0 то мех движ перешло в тепловое хаотическое дв молекул ( шары нагрелись )
1,10 Энергия как универ мера различ форм дв материи
Энергия –универс мера движен материи во всех ее формах
Энерг делится : механическую, внутр (тепловую) электро-
мгнитную, ядерную. Любое тело обл запасом энергиим, она обл свойством адитивности, энегрия системы есть функция состояния. Величины характ количествено мате-рию – масса и движение – энергия , взаимо связ законом E=mc2c скорость света в вакуме.
1,11 Работа силы.
Процесс изм энергии под действием сил наз процессом совершения работы. Работа, совершоная системой в любом процессе – мера изм энергии в этом процессе. Совершонн. Работа есть форма передачи энергии.dА=Fdr=Fvdt в скаля форме dA=FdScosa = FzdSdS-длина пути а-угол между F и drFz=Fcosa – проекц силы на направление перемещен. Если
F, dA >0 сила движущая , <0 –тормозящая. Работа внутри сил твердого тела = 0. Поступат движение твердого тела dA=Fвнешdrc=Fвнеш vcdt =vcdK=vcd ( mvc) Работа совершоная на конечном участке L точки приложения силы F выражается криволинейным интегралом A=интегр по LFdr=интегр по LFtdS Силы, работа кот зависит только от нач. и конеч точек их положения и не зависит от законов их движения по траектории назыв. Тангециальным. Работа потен силы приперемещении точки в доль замкнутой траектории = 0.
круг интегралFtdS=0 Поле сил наз стационарны. Если ¶F/¶t=0 Диссипативные силы-суммарная работа при любых перемещениях всегда отрицательна (трение,скольжение, сопрот.) Гироскопические, силы зависящие от скорости мат точки, на которую они действ. И направ перепндикулярно этой скорости ( сила Лоренца) Их работа всегда = 0 . Работа постояной силы на пути S. A=FScosa, при а =0 A=FS. CИ-1Дж.Характеристика работы: мгновеная мощность – скаляр-ная физич велич N=dA/dt=Fdr/dt=Fv= FtvN=A/t 1Дж/1с=1Вт
1.12 Кинетиче энергия и ее связь с работ внеш внут сил
Кинетическая энергия тела- наз энерги механич движения под дейст силы F – dEk=dA=vdK=vdK=vd(mv) В Нютон мех m=constEk=mv2/2=Ek(v) Работа переменой силы
А= интегр от mv2 поmv1vd(mv)= mv22/2- mv21/2=
=Ek2-Ek1=êEk Кинетич энерг тела Ek=1/2интегр по mv2dm= ½ интегр по Vpv2dVТ-ма Кенига К Э мех системы = сумме К Э, которую бы имела мат точка облад массой всей системы , и движуйся со скоростью ее цетра инерции и К Э той же системы в ее движении относ поступательног движения системы отсчета с началом в центре инерции . Ek=mvc2/2+E1k. E1k-КЭ сист в сис отсчета S1 движуйщейся относит S и v=vc
1.13 Поле как форма материи, осущ силов вз меж част веществ
Физ поле – сист обладающие бсконечно больш. числом степеней свободы.- число независимых кординат которые надо задать для опредиления системы в пространстве.
1.14 Потенциальная эн-я мат точки и ее связь с силой.
Потенциальная Эн – взаимодействия различных частей одной сист
Работа = уменьшению энергии в этом процессе А=-ÎEp=Ep1-Ep2 Работа потен сил при бескончно малом измен конфи сист dА=-dEp
Работа внеш сил идет на увеличение потен эн системы dАвнеш=dEp
Градиент – обьемная производная скалярного поля ( поверхн уров-ня) скорость изм функции u в направ к нормали n к поверх уровня в этой точке gradu = ¶u/¶n, gradu=limV-0f инт undS/V интегр по замкн S охват обьем V. В задачах используется Ep=mgh
1.15 Потенц эн сист, мат точки в поле централных сил напряж.
На мат точку действуют разн силы F проход через центр. И завис только от растояния F=Fr(r)r/r Если мат точка m притягив к центру сил М, то Fr(r)<0, оталкив >0. При перемещении мат точки m из 1 в бесконечность ( поле отсут) Внеш силы выпол работу кот идет на увел потен. Эн. Сист dEp=dAвнеш=Fdr=Frdr=dEpÞинтег от ¥ по VFr(r)dr=Ep-Ep(¥) полагают Ep(¥)=0 тогда Ep=- интег от ¥ по VFr(r)dr.
Потенц силы соверш работу dA=-dEp=Fdr