Смекни!
smekni.com

Роль многократной ионизации в действии излучения (стр. 3 из 3)

Вместе с тем в средних или очень крупных молекулах соот­ветствующее возмущение будет возникать (по крайней мере в основном) в самой молекуле и, даже если она не содержит атомов тяжелее С, N и О, соответствующая энергия равна приблизитель­но 300—500 эв. Эта энергия может оказаться особенно сущест­венной, если молекула особо устойчива к воздействиям, сопро­вождающимся передачей малой энергии, или способна репарироваться после таких воздействий.

Углеводороды, белки и нуклеиновые кислоты. В случае пол­ного поглощения электронов большой энергии теоретический вы­ход gK(С) для ионизации Х-оболочки углерода, связанного в поли­этилене [16], примерно в 2,5 раза больше выхода gK(О) в воде, что нетрудно объяснить. К-электроны углерода легче отрываются, и, кроме того, они составляют 25% всех электронов С2Н4, тогда как К-электроны кислорода составляют только 20% от общего их числа в воде.

Качественно зависимость gK(С) для полиэтилена от начальной энергии электрона Т0совпадает с приведенной в предыдущем разделе. Величины gK(С) равны 0; 0,01; 0,02 и 0,03 при значениях Т0, примерно равных 0,3; 1; 10 кэв и 3 Мэв соответственно. Выход, равный 0,03, означает, что ионизация К-оболочки составляет около 1% от всех ионизации, включая те, которые производятся электронами, возникающими при каждой ионизации К-оболочки.

Вычисления Дурупа и Платцмана [16] справедливы также для рентгеновского и γ-излучения при следующих упрощающих пред­положениях, вполне реальных для многих экспериментов: комптоновские электроны и фотоэлектроны поглощаются полностью, а фотоны, образовавшиеся при комптоновском рассеянии, не пре­терпевают дальнейших неупругих столкновений в облучаемом веществе. Для моноэнергетических фотонов большой энергии gк(С) для полиэтилена получается, как и ожидалось, приблизи­тельно таким же, как и для электронов большой энергии. Подоб­ным же образом при высоких энергиях gKмедленно уменьшается с уменьшением энергии фотона, но в этом случае график gKпро­ходит через широкий минимум. Такое поведение отражает воз­растающий вклад фотоэлектрического эффекта при низких энер­гиях .

Результаты вычислений для полиэтилена легко распростра­няются на другие углеводороды. Специфика углеводорода опре­деляется главным образом отношением числа атомов углерода н общему числу связанных электронов. Выход gK(С) пропорцио­нален этому отношению, которое может меняться приблизительно на 50% от одного углеводорода к другому. Физическое состояние углеводорода, по существу, не влияет на величину gK. Даже если абсолютные значения теоретических выходов малы, они на­ходятся в соответствии с наблюдаемыми значениями Gдля раз­личных строго эндотермических процессов радиолиза ароматичес­ких углеводородов. Другие возможные причины следует, конечно, исключить, прежде чем можно будет сказать, что ионизация K-оболочки является преобладающим процессом. Это, по-видимому, будет не легкой задачей. Однако, как указывалось выше, пред­сказанная зависимость выходов от энергии падающих частиц вероятно поможет найти один из возможных путей ее решения.

Дуруп и Платцман распространили свои расчеты для элект­ронного облучения и на некоторые белки. Было найдено, что при небольшой примеси серы gK(S) пренебрежимо мало, тогда как по оценке gK(S) составляет менее 10% от суммы значений gKдля С, N и О (последняя величина составляет приблизительно 80% от значения gK(С) для полиэтилена). Следовательно, при воздей­ствии электронами, так же как и при воздействии рентгеновским и γ -излучениями большой энергии при нормальных условиях, атомы серы не должны заметно увеличивать возможную роль, которую играет ионизация внутренних оболочек в молекуле белка.

Нуклеиновые кислоты не обсуждались явным образом теми же авторами. Несмотря на относительно большое содержание фосфора, следует ожидать, что величина £# (Р) составит только около 1% от суммы значений gKдля С, N и О. Однако значение gL(P) должно быть по крайней мере сравнимо с этой величиной. Так как ионизация L-оболочки фосфора почти всегда приводит к переходам Оже, выход многократных ионизации при облучении нуклеиновых кислот (включая эффект Оже) может даже, как указывалось выше, превзойти довольно большое значение gK(С), вычисленное для полиэтилена.

Когда дело касается биологических макромолекул, физик вряд ли сможет отличить возмущения, вызванные переходами Оже, от эффектов, обусловленных вырыванием валентных элект­ронов. Существуют некоторые экспериментальные исследования, которые, по-видимому, имеют отношение к данному вопросу. В этих исследованиях действия рентгеновского излучения авто­ры рассматривают преобладающую ионизацию К-оболочки, ко­торая начинается после того, как энергия фотона превзойдет ее порог.

Уже 15 лет назад Гилд [41] пытался использовать это, чтобы решить, является ли ионизация атомов фосфора более эффективной для инактивации бактериофага Т 1, чем ионизация любой дру­гой молекулы. Его гипотеза не подтвердилась. Манойлов [42] приписывал некоторые наблюдаемые радиационные повреждения ионизации К-оболочки железа (Z— 26) в цитохромной системе. Недавно Аддинк [43] пытался объяснить вызванное рентгеновским излучением отщепление жестко связанного цинка (Z= 30) от карбоангидразы результатом возмущения, вызванного переходом Оже. Однако два последних наблюдения имеют чисто качествен­ный характер, и к тому же Гилд использовал только немо но энер­гетическое рентгеновское излучение.

Гомбергидр. [44] использовали монохроматические регулируе­мые источники рентгеновского излучения. В их планы входило изучение возможного радиационного эффекта TsT-резонанса в ме­таллсодержащих ферментах и в хромосомах с введенными тяже­лыми атомами. Положительные предварительные результаты были доложены. Сообщалось также [44] о возрастающей скорости об­разования F-центров в кристаллах КВr при К-резонансе в Вr(Z= 35). В таком случае следует ожидать заметной иониза­ции К-оболочки калия (Z= 19), а также ионизации L-оболочки брома, проявляющейся в флуоресцентном рентгеновском излу­чении, испускаемом бромом с ионизированной K-оболочкой. Вы­ход K-флуоресценции для этих довольно тяжелых атомов пре­восходит 50%.

ЛИТЕРАТУРА

1. R.L.Platzman, всб.: «Symposium on radiobiology», ed. J. J. Nick-son, J. Wiley a. Sons, 1952, Ch. 7.

2. H. В. Ф е д о peн к о, УФН 68, 481 (1959).

3. С. F. P оw e 1 I, P. F. Fowler, D. H. P e гk i n sf The study of ele­mentary particles by the photographic method, Perganion Press, 1959,

53

4. S. W e x 1 e г, всб.: «Actions chimiques et biologiques des radiations», vol. 8, M. Haissinsky (ed4.), Masson, 1965, Ch. 3.

5. G. J. N e a r y, Int. J. Radiation Biol. 9, 477 (1965); J. R e a d, Physics Med. Biol. 2, 258 (1957/58).

6. W. P. McNutly, F. Hutchinson, Arch. Biochem. Biophys. 50, 92 (1954); E. G. P о 1 1 агd, W. R. G u i Id, F. Hutchinson, R. B. S e t 1 оw, всб.: «Progress in Biophysics», vol. 5, J. A. V. But­ler, J. T. Randall (eds.), Pergamon Press, 1955, Ch. 3.

7. P. H оw агd-F la n d e r s, всб: «Advances in biological and medical physics», vol. 6, C. A. Tobias, J. H. Lawrence (eds.), Acad. Press, 1958, p. 553; Т. Вr u s t a d, Всб.: «Advances in biological and medical phy­sics», vol. 8, 1962, p. 161.

8. А. Оr e, A. L a r s e n, Radiation Res. 21, 331 (1964).

9. A. M. R a u t h, J. A. Simpson, Radiation Res. 22, 643 (1964).

10. F. Hutchinson, Radiation Res., Suppl. 2, 49 (1960).

11. R. L. Platzman, J. Franc k, всб.: «Symposium on information theory in biology», H. P. Yockey, R. L. Platzman, H. Ouastler (eds.), Pergamon Press, 1958, p. 262.

12. L. J. Кi e f f e r, G. H. D u n n, Revs. Mod. Phys. 38, 1 (1966).

13. B. L. S сh r a m, A. J. H. Воe r b оm, J. Кi s t e m a k e r, Physica 32, 185 (1966); B. L. S сh r a m, Physica 32,197 (1966); B. L. S сh гa m, lonization of noble gases and molecular gases by high energy elect­rons, Thesis, Univ. of Amsterdam Van Soest, 1966.

14. R. D. R i сh t m уe r, Phys. Rev. 49, 1 (1936); F. K. R i сh t m уe r, Revs. Mod. Phys. 9, 391 (1937).

15. J. D u r u p, R. L. Platzman, Disc. Faraday Soc. 31, 156 (1961).

16. J. D u r u p, R. L. P 1 a t z m a n, J. Ghim. Phys., впечати.

17. L. V. S p e n сe r, U. F a n о, Phys. Rev. 93, 1172 (1954).

18. A. J. Соm p t оn, S. K. A 1 1 i s оn, X-rays in theory and experiment, Van Nostrand, 1935; E. H. Вu r h оp, The Auger effect, Univ. Press, 1952; M. A. L i s t e g a r t e n, The Auger effect, Bull. Akad. Nauk, SSSR, Phys. Ser. 24, 1050 (1960); I. Bergstrom, C. N оr d 1 i n g, всб.: «Alpha-, betha- and gamma-ray spectroscopy», vol. 2, K. Siegbahn (ed.), North-Holland Publ. Co., 1965, Ch. 25.

19. F. P 1 e a s оn t оn, A. H. S n e 1 1, Proc. Roy. Soc. 241 A, 141 (1957).

20. T. A. Carlson, W. E. Hunt, M. О. Кr a u s e, Phys. Rev., в пе­чати.

21. Т. А. С а г 1 sо n, M. О. К rause, Phys. Rev. 140A, 1057 (1965).

22. T. A. Carlson, личное сообщение.

23. Т. А. Саг 1 s оn, M. О. Кr a u s e, Phys. Rev. 137A, 1655 (1965).

24. A. H. W a p s t r a, G. J. N e i j g h, R. van L i e s h оu t, Nuclear spectroscopy tables, North-Holland Publ. Co., 1959, p. 77.

25. T. A. Carlson, R. M. White, всб.: «Symposium on the chemical effects of nuclear transformations», vol. 1, Int. Atomic Energy Agency, 1965, p. 23; Т. А. Сa r 1 s оn, R. M. W h i t e, J. Ghem. Phys. 44, 4510 (1966).

26. D. D e V a u U, W. F. L i b b y, J. Am. Chem. Soc. 63, 3216 (1941).

27. E. P. Cooper, Phys. Rev. 61, 1 (1942).

28. W. M e h 1 h огn, Z. Phys. 160, 247 (1960).

29. G. K. Wertlieim, H. J. Guggenheim, J. Ghem. Phys. 42, 3873 (1965); W. Тгi f t h a u s e r, P. C. Craig, Phys. Rev. Letters 16, 1161 (1966).

30. J. H. 0. Varley, Nature 174, 886 (1954); J. Nuclear Energy 1, 130 (1954); Proc. 1-st Internatl, Conf. peaceful uses atomic energy, Geneva, 1955, vol. 7, p. 242.

31. R. S m о 1 u сh оw s k i, D. A. W i e g a n d, Disc. Faraday Soc. 31, 151 (1961); R. E. Howard, S. V оs k o, R. S m 0 1 U t h оw s k i, Phys. Rev. 122, 1406 (1961).

32. Б, J, H агt. J. Chem, Edup, 34, 586 (1957),

§3