В твёрдом теле, в отличие от электромагнитных волн, которые имеют два состояния поляризации, может идти продольная волна и поперечная с двумя состояниями поляризации, поэтому появился множитель
Тогда внутренняя энергия кристалла изобразится как интеграл:
Для фотонов верхний предел был
Попробуем найти классический предел (классическая механика всегда является предельным случаем квантовой).
здесь
При
3. Твёрдое тело. Решётка Браве. Обратная решётка
Чем замечателен идеальный кристалл? Тем, что в нём возможны сдвиги, при которых вся эта структура переходит в себя (в узлах могут быть сложные группы атомов, они тоже переходят в себя).
Кристалл – это трёхмерная структура, три вектора
Симметрия кристалла позволяет получить важную теорему Блоха: волновые функции стационарных состояний электронов в твёрдом теле имеют вид , при этом пространственная функция
обладает таким свойством периодичности:
.
Что эта волновая функция из себя представляет в одномерном случае? Функция
|
Вот примерно такая волновая функция электронов, она максимальна в окрестности атома, там плотность вероятности обнаружить электрон больше, но в общем-то она не равна нулю в межатомных промежутках. Это просто означает, что электроны в твёрдом теле уже не принадлежат атомам, каждый электрон – житель всей этой решётки, волновая функция электрона размазана по всему образцу. Понятно почему: атомы это соседние потенциальные ямы, разделённые потенциальным барьером, но есть туннельный эффект.
4. Зоны энергии
Электрон в твёрдом теле заведомо находится в связанном состоянии, согласно общим положениям квантовой теории его энергия должна квантоваться, то есть собственные значения гамильтониана должны быть дискретны. Мы увидим сейчас, как она квантуется. Напишем гамильтониан:
Потенциальная энергия выглядит, конечно, сложным образом: это потенциальные ямы в окрестности атомов, и её не только ядра создают, там и все электроны. Выражение для гамильтониана задать очень сложно, надо учитывать взаимодействие электронов между собой, взаимодействия с ядрами, взаимодействие ядер между собой…, но нам это не важно, нам важно одно – эта функция периодическая. Напишем уравнение на собственные значения гамильтониана, где функция имеет такой вид :
Для каждого
|
Для малых значений nэти зоны не перекрываются, но при больших значениях n они начинают перекрываться. Ещё более детальный анализ показывает, что имеются уровни энергий для электрона в атоме, когда эти атомы построятся в решётку, то эти уровни энергий расщепляются на зоны (рис. 4.2). Число уровней, на которые расщепляется начальный, равно 2N, где N – число атомов.