В качестве базиса выбираются собственные векторы какого-либо оператора.1) Если взяты собственные векторы
оператора , то говорят, что мы работаем в A-представлении. Тогда все векторы и все операторы будут выражаться в этом базисе. Если – оператор координаты, тогда имеет место такое равенство: , – собственный вектор, отвечающий собственному значению q. Если в качестве базисных векторов будут взяты векторы , то есть собственные векторы оператора координат, то значит мы работаем в координатном представлении.9
Проблема такая: как связать абстрактное пространство, в котором разыгрываются все эти события, с нашим реальным наблюдаемым миром, в котором мы живём? Как нам отсюда пролезть туда, в этот потусторонний мир, в котором действуют правила игры, которые мы сформулировали. Лазейка такая: чтобы задать вектор в виде набора чисел, надо предъявить базис. Операторы, с которыми мы имеем дело (это эрмитовы операторы), обладают тем свойством, что для них имеется n собственных векторов, эти собственные векторы эрмитова оператора ортогональны, если в качестве базиса выбрать собственные векторы оператора, то его матрица в этом базисе будет диагональной, а по диагонали будут стоять собственные значения. Собственные значения – это те числа, которые мы получаем при измерении переменной, которую описывает данный оператор. Вот так можно состыковать эти абстрактные математические объекты с реальными наблюдаемыми величинами. Если мы, например, экспериментально исследовали набор собственных значений данного оператора, то мы сразу можем написать его матрицу в базисе его собственных векторов, просто по диагонали расположивши эти собственные значения. Есть законы, которые связывают операторы друг с другом, и если мы нашли один оператор, то просто зная связь между этими операторами, мы можем построить и другие операторы. Мы тогда получим матрицы в том представлении, в котором исходный оператор был диагональным.
Если
это оператор координаты, а – собственный вектор этого оператора, отвечающий собственному значению q, то есть имеет место такое соотношение: ,1) оператор действует на собственный вектор, получается тот же собственный вектор, которому отвечает число q.2)Произведение операторов
Если
, то это означает, что действует на некоторый вектор (на любой), это то же самое, что .3) Матрица оператора представится, оказывается, как произведение матриц Bи A, то есть .Произведение операторов, вообще говоря, не коммутативно (потому что произведение матриц не коммутативно), то есть когда мы действуем оператором
, а потом или наоборот, сначала , потом , то это разные результаты.4) Разность произведений это некоторый оператор: и называется коммутатором операторов и . Это математические факты, а вот с этим делом связан физический факт, очень существенный.Переменные, операторы которых не коммутируют (коммутируют), не могут (могут) быть измерены [и заданы] одновременно.
Мы уже сталкивались с такими вещами. Иксовая координата частицы и иксовая компонента импульса xи
не могут быть заданы одновременно: нельзя сказать, что частица имеет точно такую координату и имеет такую-то составляющую импульса, есть соотношение неопределённости. Это, кстати, означает, что операторы и не коммутируют.Утверждение. Постулируется, что
.1)Но, кстати, например
, это означает, что одновременно мы можем задать координату и игрековую составляющую импульса (или зетовую), а вот иксовую задать не можем, и измерить одновременно не можем. Это можно написать в более общем виде: .Из того, что
, следует, что спектр собственных значений оператора координаты непрерывен. Иначе говоря, мы можем задать любое число q, и для него найдётся вектор , который является собственным вектором оператора . Физически это означает, что при измерении координат может быть получено любое число или, ещё проще говоря, координаты не квантуются.2)Существует координатное представление, когда в качестве базисных векторов выбираются собственные векторы оператора координаты. Произвольный вектор может быть выражен в этом базисе. Если бы эти собственные векторы нумеровались каким-то дискретным параметром
, то тогда произвольный вектор представился бы суммой . Но у нас векторы нумеруются непрерывным параметром, это означает, что вместо суммы пишется интеграл: . Как находить коэффициенты разложения? В дискретном случае , а как быть, если параметр, нумерующий вектор, непрерывен? Аналогично: , базисные векторы таковы, что . функция это функция, удовлетворяющая двум условиям:1)
2)
функция проникла в математику именно в этой ситуации. Дирак, создатель квантовой теории, он эту функцию и изобрёл, потом в математике появилась целая теория этих функций.