Смекни!
smekni.com

Владимира Иннокентьевича Бабецкого (3 семестр) (стр. 12 из 27)

Мы рассматриваем стационарное состояние, волновая функция

имеет вид:
, а для функции
(пространственная часть волновой функции) должно выполняться уравнение
. В уравнение окружающая обстановка заводится посредством потенциальной энергии. Наша потенциальная энергия задана таким условием:

.

Из того, что стенки ящика абсолютно непробиваемы следует, что частица вне ящика не может находиться, мы тогда пишем сразу

вне ящика. А внутри ящика мы получим такое уравнение:

, где
.

Это уравнение в частных производных. Будем искать решение в виде

,

то есть пытаемся разделить переменные.

Тогда

,

подставим это в уравнение:

Теперь делим всё это дело на XYZ, получаем тогда уравнение такое:

.

Первое слагаемое зависит только от x, а второе только от y, а третье только от z, и утверждается, что в сумме они равны константе. Тогда всё это дело разбивается на такие уравнения:

А это уже знакомые уравнения и мы немедленно находим решения:

Это решение в ящике, мы должны получить решение для всёго пространства, чтобы оно было непрерывным. Это означает, что волновая функция в ящике должна быть устроена так, чтобы она на стенках ящика занулялась. Это условие накладывает такие ограничения:

Займёмся иксом:

даёт B1=0, то есть константу B1 мы выкинем сразу,
даёт
, это означает, что
, nx=1, 2, 3… (значения A1=0 и nx=0 брать нельзя, потому что тогда мы убиваем всё решение). Таким образом, мы получаем такое условие:
, поскольку для остальных функций мы имеем то же самое, то
и
. Для всей функции u мы получаем множество решений такого вида:

(10)

При этом

.

И окончательно результат такой: состояние частицы в ящике задаётся тремя целыми числами, которым соответствует функция (10), и этому состоянию соответствует энергия

, где a, b, cэто рёбра ящика. Вот что такое квантование, имеем дискретные состояния (тройка чисел задаёт волновую функцию определённой конфигурации) и этим состояниям соответствует энергия. Важно, что нет никаких промежуточных состояний, переходных форм нет. Состояние (1,1,1) называется основным, оно имеет минимальную энергию, а максимальная вероятность найти частицу в ящике [для этого состояния] – в середине, то есть вот частица большую часть времени проводит в середине ящика вместо того, чтобы бегать от стенки к стенке.

8

Продолжаем ту же тему. Если ящик кубический, то формулка для энергии делается симпатичнее:

Возможны различные состояния, которым отвечает одна и та же энергия. Состояниям (2,1,1), (1,2,1), (1,1,2) отвечают различные волновые функции, то есть вероятности обнаружения частицы в точках ящика разные в этих состояниях, но понятно, что им отвечает одна и та же энергия. Уровень энергии, которому отвечают несколько различных состояний, называется вырожденным, в частности, уровень, отвечающий этим трём состояниям, называется трёхкратно вырожденным.

§6 Постулаты квантовой механики

1. Векторы и операторы

2. Постулаты квантовой механики

3. Операторы динамических переменных. Координатное представление

4. Оператор энергии

5. Оператор импульса

6. Момент импульса (собственные векторы, собственные значения)

7. Спин.

Мы с вами обсудили некоторые аспекты физики систем атомных масштабов, волновые свойства частиц, квантование энергии, туннельный эффект… Это всё были отдельные фрагменты, не связанные более-менее друг с другом, это ситуация на заре создания теории, когда обнаружилась длина волны де Бройля, интерференция. И многого мы вообще не знаем, например, знаем волновую функцию, а что мы получим при измерении импульса? Мы ещё не умеем отвечать на такие вопросы. Сейчас мы обсудим как устроена окончательная теория.

От первой модели атома Бора и до окончательной формулировки теории прошло 10-12 лет,1) и мы сейчас обсудим, как вообще строится вся эта теория.

Если сравнивать с классической механикой, раз нет траектории, скоростей, ускорений, сил, то понятно, что математическая структура должна быть другой.2) Можете сейчас забыть про классическую механику, можете даже забыть то, что мы до сих пор тут обсуждали, и сейчас мы снова будем смотреть незамутнённым взглядом на новую теорию. И тут нужны некоторые математические подмостки.

1. Векторы и операторы

Вы знаете векторную алгебру (линейную алгебру), и заодно вы увидите, что не зря вы её изучали, оказывается, есть к чему её применить.

Обозначения:

– вектор a в n-мерном (может быть, бесконечномерном) абстрактном пространстве. Столбец из n чисел
задаёт компоненты вектора aв n-мерном пространстве. Когда вы видите такую штуку
, это означает, что мы имеем набор nчисел, которые можно организовать в матрицу-столбец.

– вектор сопряжённый
, это матрица-строка
.3)

Удобство этих обозначений состоит вот в следующем:

– это число, скалярное произведение двух векторов:
. Ясно, что такая штука
– скалярное произведение вектора на сопряжённый ему вектор, это будет действительное число,
. А вообще, кстати, ясно следующее, что
.

Такое равенство

расшифровывается так: есть правило, которое вектору
ставит в соответствие вектор
, и это правило обозначают буквой
. Говорят, на вектор
действует некоторый оператор, в результате действия которого, мы получаем вектор
.