Смекни!
smekni.com

Лекции по физике В.И.Бабецкого (стр. 6 из 21)

Пусть
– единичный вектор вдоль оси x. В качестве замкнутой поверхности берём цилиндр, прорезающий плоскость с двумя крышками. Напряжённости поля показаны на рисунке.

Интеграл по боковой поверхности ноль, потому что силовые линии скользят по боковой поверхности. Но как площади оснований цилиндра
. Если крышки взяты на одинаковых расстояниях от плоскости, то опять вследствие симметрии
- функция расстояния до плоскости, тогда мы напишем так:
. Тогда мы имеем:
, а это заряд, который сидит внутри нашей поверхности.

Отсюда получается:

. Что мы видим, что длина цилиндра, ну, расстояние от крышек до плоскости, выпало из формулы, то есть на любом расстоянии от плоскости напряжённость поля одна и та же. Значит поле однородное. Напишем окончательно:

Эта формула автоматически учитывает и знак заряда: если. Вот эта формула даёт исчерпывающее описание поля заряженной плоскости. Если там не плоскость, а площадь конечной толщины, то поле надо разбить на тонкие пластины и вычислять.

Вот заметьте, для точечного заряда напряжённость поля убывает с расстоянием как

, для цилиндра – как
и для плоскости вообще не убывает.

Два последние случая практически нереализуемые. Тогда какой смысл в этих формулах? Такой: например, эта формула справедлива вблизи середины плоского заряженного куска. Строго такая формула (однородное поле заполняет всё пространство) ни в какой физической ситуации не реализуется.

Поле, создаваемое произвольным распределением заряда.

Поле точечного заряда.

Пусть имеется один точечный заряд q. Это частный случай сферической симметрии. У нас есть формула:

, где
– заряд внутри сферы радиуса r, но если заряд точки, то для точечного заряда
, при любом r. Понятно почему, на любом радиусе внутри сферы точка остаётся точкой. И для точечного заряда
. Это поле точечного заряда. Потенциал поля точечного заряда:
.

Поле системы точечных зарядов. Принцип суперпозиции.

Пусть мы имеем систему зарядов
, тогда напряжённость поля, создаваемая системой точечных зарядов, в любой точке равна сумме напряжённостей, создаваемых каждым из зарядов. Я мог бы сразу написать
, если бы вы свободно читали формулы. Учитесь читать формулы повествовательно. Заряд
умножьте на вектор
, и разделите на модуль этого вектора, а что такое модуль вектора это длина. Эта вся штука даёт вектор, направленный вдоль вектора
.

То, что поля складываются это совершенно не очевидно. Это следствие линейности уравнений Максвелла. Уравнения линейны по

. Это означает, что, если вы нашли два решения, то они складываются. Бывают ли поля, для которых не выполняется принцип суперпозиции? Бывают. Гравитационное поле не в ньютоновской теории, а в правильной, не удовлетворяет принципу суперпозиции. Земля создаёт в некоторой точке определённую напряжённость. Луна тоже. Поставили Землю и Луну, напряжённость в точке не равна сумме напряжённостей. Уравнение поля не линейно, физически это означат, что гравитационное поле является само себе источником. Так. Всё, конец.

4

В прошлый раз мы остановились на обсуждении поля, создаваемом системой зарядов. И мы видели, что поля, создаваемые каждым зарядом в отдельности в данной точке, складываются. При этом я подчеркнул, что это не самая очевидная вещь, - это свойство электромагнитного взаимодействия. Физически оно связано с тем, что поле само для себя не является источником, формально это следствие того, что уравнения линейны. Есть примеры физических полей, которые сами для себя являются источником. То есть, если в каком-то объёме это поле есть, так оно создаёт само поле в окружающем пространстве, формально это проявляется в том, что уравнения не линейны. Я там написал формулу для напряжённости

, напишем ещё формулу для потенциала.

Потенциал системы точечных зарядов.

Имеется система зарядов
и т.д. И тогда для некоторой точки
мы напишем такую формулу:
. Значит, вот такой рецепт для потенциала. Напряжённость равна сумме напряжённостей, потенциал равен сумме потенциалов.

Замечание. Практически всегда удобнее вычислять потенциал, а не напряжённость, по понятным причинам: напряжённость – это вектор, и векторы надо складывать по правилу сложения векторов, ну, правилу параллелограмма, это занятие, конечно, более скучное, чем складывать числа, потенциал – это скалярная величина. Поэтому, практически всегда, когда мы имеем достаточно плотное распределение заряда, ищем потенциал, напряжённость поля потом находим по формуле:
.1)

Поле, создаваемое произвольным ограниченным распределением заряда1).

Ну, что тут означает эпитет «ограниченный»? То, что заряд локализован в конечной области пространства, то есть мы можем охватить этот заряд замкнутой поверхностью такой, что вне этой поверхности заряда нет. Понятно, что с точки зрения физики это не ограничение, ну, и, действительно, мы имеем дело практически всегда только с ограниченными распределениями, нет такой ситуации, чтобы заряд был размазан по всей вселенной, он концентрируется в определённых областях.