Можно сказать, что силовая линия магнитного поля всегда охватывает ток, иначе говоря, это выглядит так: если мы имеем проводник, по которому течёт ток Á, для любого контура, который охватывает проводник с током,
; если имеется несколько проводников, опять я возьму контур, поверхность, на него натянутую, её протыкают два проводника, тогда , при чём с учётом знаков: ток Á1 - положительный, Á2 -отрицательный. Мы имеем тогда . Вот это сразу общие такие свойства магнитного поля и тока. Значит, силовая линия всегда охватывает ток.Вот ортогональная плоскость,
вот окружность радиуса r,
я возьму тут касательный вектор, вектор, направленный вдольj, касательный вектор к окружности.
Тогда,
, где .В качестве замкнутого контура выбираем окружность радиуса r=const. Пишем тогда
, сумма длин по всей окружности (а интеграл это ни что иное, как сумма) – это длина окружности. , где Á – сила тока в проводнике. Справа стоит заряд, который пересекает поверхность за единицу времени. Отсюда мораль: . Значит, прямой проводник создаёт магнитное поле с силовыми линиями в виде окружностей, охватывающих проводник, и эта величина В убывает как при удалении от проводника, ну, и стремится к бесконечности, если мы приближаемся к проводнику, когда контур уходит внутрь проводника. Этот результат только для случая, когда контур охватывает ток. Понятно, что бесконечный проводник нереализуем. Длина проводника, – наблюдаемая величина, и никакие наблюдаемые величины не могут принимать бесконечных значений, не такой линейки, которая позволила бы измерить бесконечную длину. Это нереализуемая вещь, тогда какой толк в этой формуле? Толк простой. Для любого проводника, будет справедливо следующее: достаточно близко к проводнику силовые линии магнитного поля – вот такие замкнутые окружности, охватывающие проводник, и на расстоянии (R – радиус кривизны проводника), будет справедлива эта формула.Магнитное поле, создаваемое произвольным проводником с током.
Закон Био-Савара.
Пусть мы имеем произвольный проводник с током, и нас интересует магнитное поле, создаваемое куском этого проводника в данной точке. Как, кстати, в электростатике находили мы электрическое поле, создаваемое каким-то распределением заряда? Распределение разбивали на малые элементы и вычисляли в каждой точке поле от каждого элемента (по закону Кулона) и суммировали. Такая же программа и здесь. Структура магнитного поля сложнее, чем электростатическое, кстати, оно не потенциально, замкнутое магнитное поле нельзя представить как градиент скалярной функции, у него другая структура, но идея та же самая. Разбиваем проводник на малые элементы. Вот я взял маленький элемент , положение этого элемента определяется радиус-вектором , а точка наблюдения задаётся радиус-вектором . Утверждается, что этот элемент проводника создаст в этой точке индукцию по такому рецепту: . Откуда берётся этот рецепт? Его нашли в своё время экспериментально, трудно мне, кстати, представить, как это можно было экспериментально найти такую достаточно сложную формулу с векторным произведением. На самом деле это следствие четвёртого уравнения Максвелла . Тогда поле, создаваемое всем проводником: , или, мы можем написать теперь интеграл: . Понятно, что вычислять такой интеграл для произвольного проводника занятие не очень приятное, но в виде суммы это нормальная задача для компьютера.Пример. Магнитное поле кругового витка с током.
Общая картина силовых линий тоже просматривается (рис.7.10).
По идее, нас интересовало бы поле , но в элементарных функциях указать поле этого витка нельзя. Найти можно только на оси симметрии. Мы ищем поле в точках (х,0,0).