Конденсатором, вообще говоря, называется система из двух проводников, из которых один полностью охватывает другой, то есть, в идеале, конденсатор – вот такая штука:
Если на внутреннем проводнике заряд +q, а на внешнем -q. Внутри возникает электрическое поле вот такой конфигурации (силовые линии ортогональны поверхностям). И никакие внешние заряды не оказывают влияния на это поле, внешние поля не проникают внутрь проводящей полости, то есть от электростатического поля можно заэкранироваться. Хотите жить без электрического поля, вот, залезьте в железную бочку, закройтесь крышкой и всё, оно к вам туда не проникнет, скажем, транзистор у вас там в руках в этой бочке работать не будет, электромагнитные волны туда не будут проникать. Почему, кстати? А потому что внутри проводника поле равно нулю, поскольку напряжённость связана с распределением заряда на поверхности, а начинка проводника уже там не участвует, вы можете выкинуть эту начинку, получить полость, ничего от этого не изменится. Внутри проводника поле определяется только конфигурацией этих проводников и не зависит от внешних зарядов, тогда, если на внутреннем проводнике потенциал
, а на внешнем , то мы снова будем иметь такую вещь, что внутренняя энергия пропорциональна заряду: , заряду q, который сидит на картинке внутри проводника. Тогда пишем: . Такое устройство называется конденсатором, и величина С называется ёмкостью конденсатора. Вот это уже свойство устройства, на нём можно написать: «ёмкость С». Конденсатор – это распространённые элементы в электричестве, в электротехнике и в радиотехнике, и на них прямо написано «ёмкость такая-то», и эта величина уже не зависит от того, что имеется вокруг. По размерности ёмкость что такое? , ёмкость в одну фараду – это ёмкость такого устройства, что, если на него посадить заряд в 1Кл (это колоссальный заряд), то разность потенциалов будет 1В. Нет таких конденсаторов на свете, на Земле просто невозможно построить такой конденсатор, чтобы он имел ёмкость в фараду, поэтому, подходя к этой ёмкости, мы будем использовать микрофарады.Энергия конденсатора
Условно, два проводника представляют конденсатор. Каким образом можно посадить заряд на эти проводники, ну, зарядить конденсатор? Так, например: берём заряд и переносим с одного проводника на другой, допустим, с одного снимаем несколько электронов и тащим на другой, вот это процесс заряда конденсатора. Как фактически это делается, как можно перетащить электроны с одного проводника на другой? Имеем два проводника, подключается источник, батарейка, ключ замыкается, батарея начинает перегонять заряды с одного проводника на другой. До каких пор нам удастся перегонять их это отдельный вопрос, мы его в своё время рассмотрим, а сейчас просто: внутри этой батареи действуют силы, сторонние силы по отношению к электростатике, и эти силы перегоняют заряды с одного проводника на другой. Ясно, чтобы это разделение произвести, нужно затратить определённую работу. Вот почему: мы сняли электрон, появился положительный заряд, и этот электрон начинает притягиваться к положительному заряду, нам надо совершать работу, чтобы оттащить его от этого заряда. Эту работу можно сосчитать. Пусть мы имеем два проводника, с потенциалами и , мы переносим заряд , при этом совершается работа, равная . Учтём теперь, что разность потенциалов является функцией заряда: , тогда работа , и полная работа будет . Если мы добиваемся того, что на каждом проводнике становится заряд, равный по модулю q, то совершается такая работа. Спрашивается, куда эта работа девается? Запасается в виде энергии конденсатора, и её можно получить обратно. Энергия конденсатора равняется: . Кстати, это поясняет слово конденсатор (накопитель): с одной стороны это накопитель заряда, с другой стороны это накопитель энергии, и в качестве накопителей энергии конденсаторы, действительно, используются. Если конденсатор разряжается, эта энергия освобождается. Кстати конденсаторы большой ёмкости (сооружения порядка этой аудитории) при замыкании разряжаются со страшным громом, это драматический процесс.Энергия электростатического поля
Проблема такая: заряженный конденсатор обладает энергией, где локализована эта энергия, с чем она связана? Энергия – это интегральная характеристика, просто устройство обладает такой энергией, вопрос, повторяю, стоит в локализации энергии, то есть это энергия чего? Ответ такой: энергия конденсатора – это, на самом деле, энергия электростатического поля, энергия принадлежит полю, ни обкладкам конденсатора, ни заряду. Мы дальше получим чёткую теорему для энергии электромагнитного поля, а сейчас некоторые простые соображения.
Имеется в виду, что расстояние между пластинами много меньше характерного линейного размера,
, S – площадь пластин. Пластины имеют большую площадь, зазор маленький, в этом случае силовые линии поля однородны и внешние заряды на него не влияют. Напряжённость поля равняется , где . Мы знаем формулу для пластины с поверхностной плотностью : , между пластинами поля складываются, снаружи уничтожаются. Так как поле однородное, разность потенциалов равняется: , где d – расстояние между пластинами. Тогда мы получим, что . Действительно, обнаружили, что разность потенциалов между пластинами – линейная функция заряда, это частное подтверждение общего правила. А коэффициент пропорциональности связан с ёмкостью: . Если объём конденсатора заполнен начинкой из диэлектрика, то будет более общая формула: 1).А теперь займёмся формулой для энергии конденсатора:
. Эта формула справедлива всегда. Для плоского конденсатора мы получим: , где V – это объём области между пластинами. При наличии диэлектрика энергия плоского конденсатора равна: . Напряжённость поля внутри плоского конденсатора во всех точках одинакова, энергия пропорциональна объёму, а эта вещь тогда выступает как плотность энергии, , энергия, приходящаяся на единицу объёма внутри конденсатора. Повторяю, дальше хорошее доказательство увидим, это пока как наводящее соображение, но положение таково. Электростатическое поле обладает энергией, и, если мы возьмём элемент объёма dV, а внутри этого элемента напряжённость поля равняется Е, то внутри этого объёма будет содержаться энергия , определяемая напряжённостью поля в точке внутри этого элемента. В любом конечном объёме V будет содержаться энергия, равная .