Результирующий заряд оказывается меньше, чем Q, однако, что существенно, индукция определяется только настоящим зарядом. Заряд, проступающий на диэлектрике, не влияет на индукцию (этот вектор специально так введён). На напряжённость поля влияют все заряды, в том числе и -q’.
6
Проводники в электростатическом поле
Проводники – это тела, в которых имеются свободные носители заряда, то есть заряженные частицы, которые могут свободно перемещаться внутри этого тела. Ну, обычно, употребляется слово проводник, то в качестве синонима идёт слово металл, металлы замечательны тем, что в них имеются свободные электроны. Но, на самом деле, понятие проводника шире. Вода, например, является проводником, не сама по себе чистая вода Н2О, она состоит из нейтральных молекул, и никаких там свободных частиц нет, но в воде обычно присутствует в растворённом виде соль, то есть йод, и за счёт этого практически вся вода является проводником.
Вода, вообще, замечательное вещество. Все тела при охлаждении сжимаются, то есть плотность растёт (при охлаждении плотность увеличивается, при нагревании падает). Вот имеется аномальное явление в этом: максимальная плотность воды при +4ОС, при температуре ниже +4ОС плотность опять падает, то есть дальнейшее падение температуры приводит к падению плотности, то есть к расширению воды. Вот это удивительное поведение связано с тем, что вода играет в нашей жизни вот такую выдающуюся роль: во-первых, хороший растворитель для различных минеральных солей, а во-вторых, вот такое аномальное поведение плотности. Если бы этого не было, то, к примеру, в водоёмах, озёрах, реках, жизни не было бы, водоёмы промерзали бы до дна, а так водоёмы не промерзают. Ну, почему промерзают? Верхний слой воды охлаждается и идёт книзу, поскольку у него больше плотность, тёплые слои снизу выталкиваются наверх и охлаждаются снова. И это охлаждение шло бы очень эффективно. На самом деле этого не происходит. Когда температура нижних слоёв +4ОС, они приобретают максимальную плотность и не всплывают. Охлаждение может идти только за счёт теплопроводности, не за счёт перемещения масс, а за счёт теплопроводности. Теплопроводность – медленный процесс, и, скажем, за зиму водоём не успевает промёрзнуть, а, вот, если бы плотность воды не вела себя так, то он бы промерзал до дна и, в конце концов, всё, что там живёт, отдавало бы концы, а так в этой воде +4ОС живёт.
Некоторые утверждения:
1. Напряжённость внутри проводника равна нулю (это в электростатическом поле). По понятной причине. Если бы существовало поле, то на заряд е действовала бы сила равная
2. Потенциал внутри проводника – константа. Ну, очевидно, напряжённость – это градиент потенциала, производная от потенциала, если напряжённость – ноль (это означает, что производная – ноль), сама функция – постоянная. Потенциал во всех точках проводника одинаков. Это утверждение верно для всех точек проводника вплоть до поверхности. Отсюда мораль:
3. Поверхность проводника является эквипотенциальной поверхностью. Ну, и отсюда:
4. Силовые линии поля ортогональны поверхности проводника.
|
|
Скажем, имеем точечный заряд и проводник, внесённый в поле этого заряда. Произойдёт следующее: там, где силовые линии входят, сконцентрируется на поверхности проводника отрицательный заряд, скажем, электроны сюда подойдут, а на противоположной стороне появятся положительные заряды, это не скомпенсированные заряды ионов, из которых построена кристаллическая решётка.
Силовые линии поля будут ортогонально втыкаться в проводник, с другой стороны они будут исходить, опять же ортогонально к поверхности проводника. Ну, и, в общем-то, электрическое поле будет существенно изменено. Мы видим, что, если поверхность проводника будет внесена в поле заряда, вся конфигурация поля будет искажена. Если на проводник посадить заряд (либо снять с него часть электронов, либо насадить), этот заряд будет распределяться так, чтобы напряжённость внутри была равна нулю и чтобы поверхность проводника приняла во всех точках одинаковый потенциал.
Эту вещь полезно иметь в виду, тогда можно качественно представлять себе, как выглядит поле в окрестности заряженного проводника.
Я нарисую произвольный проводник и на него посажу заряд +q, ну, уединённый проводник (больше ничего нет). Какова будет структура поля? Соображения такие: поверхность эквипотенциальная, потенциал меняется непрерывно, значит, соседняя эквипотенциаль будет мало отличаться от этой. Вот, я могу более менее качественно нарисовать систему эквипотенциальных поверхностей. Дальше они будут так выпрямляться, и, в конце концов, на больших расстояниях орбитами будут сферы, как от точечного заряда. А теперь, силовые линии поля ортогональны этим поверхностям…
Вот такой ёж получился. Вот такая картина силовых линий.
Теперь немножко математики.
Мы имеем уравнение
Математически эта проблема сводится к решению такого уравнения при заданных граничных условиях, что
Конденсаторы
Пусть мы имеем отдельный проводник, на который посажен заряд q, этот проводник создаёт поле такой конфигурации, как на рисунке 6.2. Потенциал этого проводника одинаков во всех токах, поэтому можно говорить просто потенциал проводника, а, вообще-то, слово потенциал требует указания точки, в которой этот потенциал определяется. Можно показать, что потенциал уединённого проводника – линейная функция заряда, который на него посажен,