Смекни!
smekni.com

Туннельные и барьерные эффекты. (стр. 4 из 7)

Рис 3.1. Поле на границе металла.

Рассмот­рим теорию этого эффекта, пред­ставляющую одно из наиболее
простых приложений теории прохождения через потенциальный
барьер. Обратимся сначала к картине движения электронов в
металле в отсутствие внешнего электрического поля.

Чтобы удалить электрон из металла, необходимо затратитьнекоторую работу. Следовательно, потенциальная энергия элек­трона в металле меньше, нежели вне металла. Наиболее простым образом этот факт может быть выражен, если мы примем потен­циальную энергий электрона U (х) внутри металла равной 0, а вне металла равной С>0, так что потенциальная энергия имеет вид, изображенный на рис. 1. Схематизируя таким образом истинный ход потенциальной энергии, мы в сущности оперируем со средним полем в металле. На самой деле, потенциал внутриметалла меняется от точки к точке с периодом, равным постоян­ной кристаллической решетки. Наше приближение соответствует гипотезе свободных электронов, так как, поскольку U (х) = О, внутри металла нет никаких сил, действующих на электрон.

Здесь рассмотрим вопрос о степени правильности такого приближений. Ограничимся лишь указанием на то, что рассмотрение электронов в металле как свободно движущихся ча­стиц («электронный газ») позволяет уяснить многие явления в метал­лах и поэтому, в определенных рамках, является законным. Распре­деление по энергиям электронов этого газа таково, что подавляю­щее большинство электронов имеет энергию Е < С (при абсолютном нуле температуры электроны заполняют все уровни энергии от Е = 0 до Е = ε0 < Сгде ε0 есть так нулевая энергия; Потокэлектронов металла, падающий изнутри металла на его поверхность, обозначим через Jo. Так как электроны имеют энергию Е < С, то этот поток полностью отражается от скачка потенциала С, имеющего место на границе металл — вакуум.

Представим теперь себе, что наложено электрическое поле ع, направленное к поверхности металла. Тогда к потенциальной энергии электрона U (х) (рис. 1) добавится потенциальная энер­гия электрона в постоянном поле ع, равная - е عх(заряд электрона равен — е). Полная потенциальная энергия электрона будет тецерь равна

(3.1)

Кривая потенциальной энергии примет теперь иной вид. Она изображена на рис. 1 пунктиром. Заметим, что внутри металла нельзя создать большого поля, поэтому изменение U (х) произой­дет лишь вне металла.

Мы видим, что образуется потенциальный барьер. По класси­ческой механике электрон мог бы пройти через барьер лишь в том случае, если его энергия Е > С. Таких электронов у нас очень мало (они обусловливают малую термоионную эмиссию). Поэтому никакого электронного тока по классической механике при нало­жении поля получиться не, должно. Однако, если поле ع доста­точно велико, то барьер будет узок, мы будем иметь дело с рез­ким изменением потенциальной энергии и классическая механика будет неприменима: электроны будут проходить через потенциаль­ный барьер.

Вычислим коэффициент прозрачности этого барьера для элек­тронов, имеющих энергию движения по оси ОХ, равную Ех. Согласно (1.24) дело сводится к вычислению интеграла

где ххи х2координаты точек поворота. Первая точка поворота есть (рис. 1), очевидно, х1 = 0, так как для всякой энергии Ех< С горизонтальная прямая Ех, изображающая значение энергии движения по ОХ, пересекает кривую потенциальной энергии в точке х = 0. Вторая точка поворота х2получится, как видно из чертежа, при

отсюда

следовательно,

(3.2)

Введем переменную интегрирования.

Тогда мы получим

(3.3)

Таким образом, коэффициент прозрачности Dдля электронов, обладающих энергией движения по оси ОХ, равной Ех, равен

(3.4)

Коэффициент этот несколько различен для разных Ех, но так как С > ЕХ, то средний (по энергиям электронов) коэффициент проз­рачности будет иметь вид

(3.5)

где

и ع0— константы, зависящие от рода металлов. Ток холодной эмиссии будет равен

Эта зависимость тока от поля вполне подтверждается экспериментами.

§4. Трехмерный потенциальный барьер.Квазнстационарные состояния.

Рассмотрение задачи о прохождении через потенциальный барьер, отличалось той особенностью, что речь шла о потоке частиц, приходящих из бесконечности и встречающих на своем пути потенциальный барьер. В дальнейшем (теория радиоактивного распада, автоионизация атомов) нам встретятсятакие случаи, когда речь будет идти о потоке частиц, выходящих из неко­торой ограниченной обла­сти пространства (ядро атома, атом), окруженной, потенциальным барьером. Пусть сфера с центром в 0 и радиусом r0(рис. 1,а)

Рис.4.1. Потенциальный барьер, ограничивающий замкнутую область (r< r0)

Есть та поверхность, на которой потенциальная энергия U (r) принимает максимальное значение, так что для r < r0, U < Umи для r > r0, U < Um. Соответствующий пример графика U(г) дан на рис. 1, б. Допустим, что нас интересует прохождение через барьер частиц, первоначально находившихся внутри него. Соответственно предположению, что частицы, падающие извне, отсутствуют (нет «бомбардировки»), мы должны взять вне барьера лишь уходящие волны.

(4.1)

Это условие мы будем называть условием излучения. Ясно, что уравнение Шредингера

(4.2)

в этом случае может иметь лишь нестационарные решения. Дей­ствительно, применим закон сохранения числа частиц к сфере радиуса r:

(4.3)

Из (4.1) имеем,

(4.4)

и, стало быть,

(4.5)

т. е. среднее число частиц в объеме сферы Vубывает, так что ψ не может гармонически зависеть от времени.

Задачу об истечении частиц из барьера можно решать, исходя из уравнения (4.2) с начальным условием. таким, что функция ψ (r, 0) отлична от нуля лишь внут­ри барьера (чтобы выразить тот факт; что при t = 0 частица нахо­дилась внутри барьера). Можно, од­нако, исходить из другого условия, до некоторой степени противоположного, именно считать, что истечение частиц происходит уже давно и зна­чительная часть их уже находится вне барьера.

Рис 4.2 Потенциальный барьер, ограничивающий замкнутую область (r < r1) и имеющий простую прямоугольную форму.

Такой подход к реше­нию мы рассмотрим подробнее. Он удобен тем, что допускает разделе r и t в уравнении (4.2) Положим сразу

При этом величина Е будет комп­лексной, и ее нельзя рассматривать как энергию частиц. Положим

(4.7)

Тогда среднее число частиц в объеме V0, заключенном внутри барьера, согласно (4.6) и (4.7), будет

т. е.

(4.8)

Величина λ - константа распада. Подста­новка (46) в (4.2) дает

(99.9)

Чтобы выяснить принципиальную сторону дела, мы рассмотрим схематичный пример, взяв форму барьера U (r), изображенную на рис. 4.1. Рассмотрим далее, для простоты, состояния с орбиталь­ным моментом, равным нулю: / = 0. Тогда, полагая