Смекни!
smekni.com

Суперструны и м-теория (стр. 3 из 4)

Эта теория касается открытых суперструн. В ней есть только одна (N=1) суперсимметрия в десятимерии. Открытые струны могут переносить на своих концах калибровочные степени свободы, а для того, чтобы избежать аномалий, калибровочная группа должна быть SO(32) (SO(N) - Группа NxN ортогональных матриц с определителем, равным единице. Ортогональность означает, что транспонированная матрица равна обратной). Кроме того, в ней рассмтриваются D-браны с 1,5 и 9 пространственными измерениями.

•Type IIA:

Это теория замкнутых суперструн с двумя (N=2) суперсимметриями в десятимерии. Два гравитино (суперпартнера гравитона) движутся в противоположных направлениях по мировому листу замкнутой струны и имеют противоположные киральности по отношению к 10-мерной группе Лоренца, так что это некиральная теория. Также в ней не рассматривается калибровочной группы, зато есть рассматриваются D-браны с 0,2,4,6 и 8 пространственными измерениями.

•Type IIB:

Это тоже теория замкнутых суперструн с N=2 суперсимметрией. Однако в этом случае гравитино имеют одинаковую киральность по отношению к 10-мерной группе Лоренца, так что это киральная теория (Хиральность - свойство объекта не совпадать, не совмещаться со своим зеркальным отображением (в плоском зеркале) ни при каких перемещениях и вращениях). Снова нет калибровочной группы, но есть D-браны с -1, 1, 3, 5, и 7 пространственными измерениями.

•SO(32) Гетеротическая (Heterotic):

А это струнная теория с суперсимметричными полями на мировом листе, двигающимися в одном направлении, и несуперсимметричными, двигающимися в противоположных. В результате получаем N=1 суперсимметрию в десятимерии. Несуперсимметричные поля делают вклад в спектр как безмассовые бозоны, а сам спектр не аномален только из-за SO(32) калибровочной симметрии.

•E8 x E8 Гетеротическая (Heterotic):

Совершенно идентична SO(32) за тем исключением, что в ней вместо группы SO(32) используется группа E8xE8, что тоже устраняет аномалии в спектре.

Стоит отметить, что E8 x E8 Гетеротические струны исторически рассматривались как самая перспективная теория для описания физики вне Стандартной Модели. Она в течение длительного времени считалась единственной струнной теорией, имеющей хоть какое-то отношение к реальному миру. Связано это с тем, что калибровочная группа Стандартной Модели - SU(3)xSU(2)xU(1) - хорошо соотносится с одной из групп E8. Вторая E8 не взаимодействует с материей кроме как через гравитацию, что может объяснить проблему темной материи в астрофизике. Из-за того, что мы все еще не полностью понимаем струнную теорию, вопросы типа «как происходило нарушение суперсимметрии» или «почему в Стандартной Модели именно три поколения частиц», остаются без ответа. Большинство подобных вопросов имеют отношение к компактификации, которая также называется теорией Калуцы-Клейна. Пока же ясно то, что струнная теория содержит все элементы, чтобы быть теорией объединенных взаимодействий, и можно сказать, что это пока единственная настолько завершенная теория подобного толка. Однако мы не знаем, каким же образом все эти элементы описывают наблюдаемые явления.

Кроме того, теория каждого из пяти типов суперструн говорит о том, что любая суперструна способна порождать наборы частиц, которые выглядят как соответствующие колебания суперструны другого типа. Это происходит в области сильной связи. Например, струна первого типа может в области сильной связи имитировать поведение струны второго типа, и наоборот.

На основе этого был сделан вывод, что имеющиеся описания суперструн, все пять теорий, есть «подтеории», часть одной более общей теории, более глобальной, чем теория суперструн. Причем она выглядит как теория суперструн только в области слабой связи, в области же сильной связи она может обнаружить совершенно новые возможности.

IV. М-теория.

Эту, более общую, теорию назвали М-теорией, от английского слова «Mystery» - тайна. Это именно та теория, различные фазы которой может описывать каждая из пяти теорий суперструн из десятимерия. М-теория может перейти в каждую из теорий суперструн, если она существует в пространстве с размерностью более десяти.

Сначала ученые предполагали разработать М-теорию для 11-мерного пространства. В таком случае понятно, каким образом лишние, по сравнению с десятимерием степени свободы теории комбинируются в десятимерный мир, в котором существуют суперструны. Например, одна теория получается, когда 11-е измерение скручивается в очень маленькую окружность — что-то вроде 10-мерного цилиндра. Другая теория возникает, когда М-теория выделяет две десятимерные плоскости на некотором, очень малом, расстоянии друг от друга. Эти плоскости, а точнее гиперплоскости, параллельны друг другу. Тогда 10-мерный мир воспроизводится граничными эффектами чего-то более общего, происходящего во всем объеме 11-мерного пространства.

Оказалось, что при слабой связи и малой энергии, М-теория превращается в 11-мерную теорию супергравитации. Таким образом, последняя теория, до этого стоявшая особняком, включилась в общую картину мира. Однако 11-мерность может породить только две теории суперструн. Остальные три не смогли произойти из первых двух и был сделан шаг к увеличению размерности. Для вывода из одного источника всех теорий суперструн требуется 12-мерное пространство, где наряду с 10-пространственными измерениями имеются два времени. Но в то время как каждая из пяти теорий суперсимметрична, никакой суперсимметрии в 12-мерном пространстве нет.

Пять описанных выше суперструнных теорий сильно различаются с точки зрения слабо-связанной пертурбативной теории (теории возмущений, описанной выше). Но на самом деле, как выяснилось в последние несколько лет, они все связаны между собой различными струнными дуальностями. (Назовем теории дуальными, если они описывают одну и ту же физику).

Первый тип дуальности, которую следует обсудить, - Т-дуальность. Такой тип дуальности связывает теорию, компактифицированную на окружности радиуса R, с теорией, компактифицированной на окружности радиуса 1/R. Таким образом, если в одной теории пространство свернуто в окружность малого радиуса, то в другой оно будет свернуто в окружность большого радиуса, но обе они будут описывать одну и ту же физику. Суперструнные теории типа IIA и типа IIB связаны через Т-дуальность, SO(32) и E8 x E8 гетеротические теории также связаны через нее.

Еще одна дуальность, которую мы рассмотрим - S-дуальность. Проще говоря, эта дуальность связывает предел сильной связи одной теории с пределом слабой связи другой теории. (Отметим, что при этом слабо связанные описания обеих теорий могут очень сильно различаться.) Например, SO(32) Гетеротическая струнная теория и теория Типа I S - дуальны в 10-мерии. Это означает, что в пределе сильной связи SO(32) Гетеротическая теория переходит в теорию Типа I в пределе слабой связи и наоборот. Найти же свидетельства дуальности между сильным и слабым пределами можно, сравнив спектры легких состояний в каждой из картин и обнаружив, что они согласуются между собой. Например, в струнной теории Типа I есть D-струна, тяжелая при слабой связи и легкая при сильной. Эта D-струна переносит те же легкие поля, что и мировой лист SO(32) Гетеротической струны, так что когда теория Типа I очень сильно связана, D-струна становится очень легкой и мы видим, что ее описание становится таким же, как и через слабо связанную Гетеротическую струну. Другой S-дуальностью в 10-мерии является самодуальность IIB струн: сильно связанный предел IIB струны это другая IIB теория, но слабо связанная. В IIB теории тоже есть D-струна (правда, более суперсимметричная, нежели D-струны теории Типа I, так что и физика здесь другая), которая становится легкой при сильной связи, но эта D-струна также является другой фундаментальной струной теории Типа IIB.

V. Заключение.

Наше современное представление о Вселенной и ее происхождении зависит не только от фундаментальных законов физики, но и от начальных условий во времена Большого взрыва. Например, движение брошенного мяча определяется законами гравитации. Однако, имея лишь законы гравитации, нельзя предсказать, где упадет мяч. Нужно еще знать начальные условия, то есть величину и направление его скорости в момент броска. Для описания начальных условий, существовавших при рождении Вселенной, используется модель Большого взрыва. В стандартной модели Большого взрыва начальные условия задаются бесконечными значениями энергии, плотности и температуры в момент рождения Вселенной. Иногда пытаются представить этот момент истории как взрыв некоей космической бомбы, порождающей материю в уже существующей Вселенной. Однако этот образ несправедлив, так как когда взрывается бомба, она взрывается в определенном месте пространства и в определенный момент времени и ее содержимое просто разлетается в разные стороны. Большой взрыв представляет собой порождение самого пространства. В момент Большого взрыва не было никакого пространства вне области взрыва. Или, если быть более точным, еще не было нашего пространства, возникавшего как раз в процессе взрыва и инфляционного расширения

Теория струн модифицирует стандартную космологическую модель в трех ключевых пунктах. Во-первых, из теории струн следует, что Вселенная в момент рождения имела минимально допустимый размер. Во-вторых, из теории струн следует дуальность малых и больших радиусов. В-третьих, число пространственно-временных измерений в теории струн и М-теории больше четырех, поэтому струнная космология описывает эволюцию всех этих измерений. В начальный момент существования Вселенной все ее пространственные измерения равноправны и свернуты в многомерный клубок планковского размера. И только потом, в ходе инфляции и Большого взрыва часть измерений освобождается из оков суперструн и разворачивается в наше огромное 4-мерное пространство-время.