Самостоятельная и несамостоятельная проводимость газов. В естественном состоянии газы не проводят электрического тока, т.е. являются диэлектриками. В этом легко убедиться с помощью простого тока, если цепь прервана воздушным промежутком.
В приведенном рисунке гальванометр в цепи показывает отсутствие тока несмотря на приложенное напряжение. Это свидетельствует об отсутствии проводимости газов в обычных условиях.
Это значит, что ионы не исчезают мгновенно, а перемещаются вместе с газом. Однако при увеличении расстояния между пламенем и промежутком 1-2 ток постепенно ослабевает, а затем исчезает. При этом разноименно заряженные ионы стремятся сблизиться под влиянием силы электрического притяжения и при встрече вновь воссоединяются в нейтральную молекулу. Такой процесс носит название рекомбинации ионов.
Нагревание газа до высокой температуры не является единственные способом ионизации молекул или атомов газа. Нейтральные атомы или молекулы газа могут ионизироваться также и под воздействием других факторов.
Ионная проводимость имеет рад особенностей. Так, нередко положительные и отрицательные ионы представляют собой не единичные ионизированные молекулы, а группы молекул, прилипших к отрицательному или положительному электрону. Благодаря этому, хотя заряд каждого иона равен одному-двум, редко большему числу элементарных зарядов, массы их могут значительно отличаться от масс отдельных атомов и молекул. Этом газовые ионы существенно отличаются от ионов электролитов, представляющих всегда определенные группы атомов. В силу этого различия при ионной проводимости газов не имеют место законы Фарадея, столь характерные для проводимости электролитов.
Второе, также очень важное, отличие ионной проводимости газов от ионной проводимости электролитов состоит в том, что для газов не соблюдается закон Ома: вольтамперная характеристика имеет более сложный характер. Вольтамперная характеристика проводников (в том числе и электролитов) имеет вид наклонной прямой (пропорциональность I и U), для газов она имеет разнообразную форму.
Это означает, что начиная с некоторого напряжения, ток сохраняет постоянное значение, несмотря на увеличение напряжения. Это постоянное, не зависящее от напряжения значение силы тока называют током насыщения.
Нетрудно понять смысл полученных результатов. Вначале с ростом напряжения увеличивается число ионов, проходящих через сечение разряда, т.е. увеличивается ток I, ибо ионы в более сильном поле движется с большей скоростью. Однако, как бы быстро не двигались ионы, число их, проходящее через это сечение за единицу времени, не может быть больше, чем общее число ионов, создаваемых в разряде в разряде в единице времени внешними ионизирующим фактором.
Скачок тока показывает, что число ионов сразу резко возросло. Причиной этого является само электрическое поле: оно сообщает некоторым ионам столь большие скорости, т.е. столь большую энергию, что при соударении таких ионов с нейтральными молекулами последние разбиваются на ионы. Общее число ионов определяется теперь не ионизирующим фактором, а действием самого поля, которое может само поддерживать необходимую ионизацию: проводимость из несамостоятельной становится самостоятельной. Описанное явление внезапного возникновения самостоятельной проводимости, имеющее характер пробоя газового промежутка, - не единственная, хотя и весьма важная, форма возникновения самостоятельной проводимости.
Искровой разряд. При достаточно большой напряженности поля (около 3 МВ/м) между электродами появляется электрическая искра, имеющая вид ярко светящегося извилистого канала, соединяющего оба электрода. Газ вблизи искры нагревается до высокой температуры и внезапно расширяется, отчего возникают звуковые волны, и мы слышим характерный треск.
Описанная форма газового разряда носит название искрового разряда или искрового пробоя газа. При наступлении искрового разряда газ внезапно утрачивает свои диэлектрические свойства и становится хорошим проводником. Напряженность поля, при которой наступает искровой пробой газа, имеет различное значение у разных газов и зависит от их состояния (давления, температуры). Чем больше расстояние между электродами, тем большее напряжение между ними необходимо для наступления искрового пробоя газа. Это напряжение называется напряжением пробоя.
Он состоит из двух металлических шаров, закрепленных на стойках 1 и 2, 2-я стойка с шаром может приближаться или удаляться от первой при помощи винта. Шары присоединяют к источнику тока, напряжение которого требуется измерить, и сближают их до появления искры. Измеряя расстояние при помощи шкалы на подставке, можно дать грубую оценку напряжению по длине искры (пример: при диаметре шара 5 см и расстоянии 0,5 см напряжение пробоя равно 17,5 кВ, а при расстоянии 5 см – 100 кВ).
Свободный электрон 1 при соударении с нейтральной молекулой расщепляет ее на электрон 2 и свободный положительный ион. Электроны 1 и 2 при дальнейшем соударении с нейтральными молекулами снова расщепляет их на электроны 3 и 4 и свободные положительные ионы, и т.д.
Такой процесс ионизации называют ударной ионизацией, а ту работу, которую нужно затратить, чтобы произвести отрывание электрона от атома – работой ионизации. Работа ионизации зависит от строения атома и поэтому различна для разных газов.
Образование ионной лавины и есть процесс искрового пробоя, а то минимальное напряжение, при котором возникает ионная лавина, есть напряжение пробоя.
Таким образом, при искровом пробое причина ионизации газа заключается в разрушении атомов и молекул при соударениях с ионами (ударная ионизация).
Молния. Красивое и небезопасное явление природы – молния – представляет собой искровой разряд в атмосфере.
Уже в середине 18-го века обратили внимание на внешнее сходство молнии с электрической искрой. Высказалось предположение, что грозовые облака несут в себе большие электрические заряды и что молния есть гигантская искра, ничем, кроме размеров, не отличающаяся от искры между шарами электрической машины. На это указывал, например, русский физик и химик Михаил Васильевич Ломоносов (1711-65), наряду с другими научными вопросами занимавшийся атмосферным электричеством.