Переходная h1(t) и импульсная h(t) характеристики.
Часть 3.
Анализ цепи частотным методом при апериодическом воздействии.
3.1 Найти и построить амплитудно-фазовую (АФХ), амлитудно-частотную (АЧХ) и фазо-частотную (ФЧХ) характеристики функций передачи HU(s).
амплитудно-фазовая характеристика:
амплитудно-частотная характеристика:
3.2 Определить полосу пропускания цепи по уровню 0.707
Из графика АЧХ находим полосу пропускания цепи:
с-1.3.3 Найти и построить амплитудный и фазовый спектры входного сигнала по уровню 0.1 .
Амплитудный спектр входного сигнала:
3.4 Сопоставляя спектры входного сигнала с частотными характеристиками цепи, дать предварительные заключения об ожидаемых искажениях сигнала на выходе цепи.
Существенная часть амплитудного спектра входного сигнала укладывается в полосу пропускания, исключая полосу 0-5*104 с-1, где и будут наблюдаться основные амплитудные искажения. Фазо-частотная характеристика цепи нелинейна, поэтому здесь будут иметь место фазовые искажения, что видно на рис.
3.5 Найти и построить амплитудный и фазовый спектр выходного сигнала.
Получаются по формулам:
Вещественная характеристика:
Существенную часть этой характеристики кусочно-линейно аппроксимируем. Начертим первую и вторую производную кусочно-линейной аппроксимирующей функции.
График напряжения, вычисленного по этой формуле, и полученный в ч.2.
Анализ цепи частотным методом при периодическом воздействии.
Дано: T=18*10-5c. Um=10 В. tu=6*10-5c.
форма сигнала u0(t):
Коэффициенты ряда Фурье для u0(t) найдём из следующего соотношения:
где w1 = 2p/Т , k=0, 1, 2, ... w1=3.491*104с.
Значения Akи ak приведены в табл. ,на рис. , построены соответственно амплитудный и фазовый спектры заданной периодически последовательности сигналов u0(t).
k | Ak | ak |
0 | 0 | 0 |
1 | 2.067 | 0.524 |
2 | 3.308 | -0.524 |
3 | 2.774 | -1.571 |
4 | 2.363 | -2.618 |
5 | 1.034 | 2.618 |
6 | 0 | 1.571 |
7 | 0.413 | -2.618 |
8 | 0.301 | 2.618 |
9 | 0 | 1.571 |
4.2 Построить на одном графике заданную периодическую последовательность импульсов и ее аппроксимацию отрезком ряда Фурье, число гармоник которого определяется шириной амплитудного спектра входного сигнала, найденной в п 3.3.
Для определения коэффициентов ряда Фурье выходного напряжения вычислим значения АЧХ и ФЧХ функции передачи для значений kw1, k=0, 1, 2, ..., 8. Тогда
k | Ak | ak |
0 | 0 | 0 |
1 | 0.208 | 1.47 |
2 | 0.487 | -0.026 |
3 | 0.436 | -1.355 |
4 | 0.361 | -2.576 |
5 | 0.15 | 2.554 |
6 | 0 | 1.443 |
7 | 0.054 | -2.785 |
8 | 0.037 | 2.429 |
9 | 0 | 1.371 |
В итоге получим:
4.4 Построить напряжение на выходе цепи в виде суммы гармоник найденного отрезка ряда Фурье.